Search results
Results From The WOW.Com Content Network
Tear resistance (or tear strength) is a measure of how well a material can withstand the effects of tearing. [1] It is a useful engineering measurement for a wide variety of materials by many different test methods .
Fracture toughness tests are performed to quantify the resistance of a material to failure by cracking. Such tests result in either a single-valued measure of fracture toughness or in a resistance curve. Resistance curves are plots where fracture toughness parameters (K, J etc.) are plotted against parameters characterizing the propagation of ...
Fracture mechanics is the field of mechanics concerned with the study of the propagation of cracks in materials. It uses methods of analytical solid mechanics to calculate the driving force on a crack and those of experimental solid mechanics to characterize the material's resistance to fracture.
The steady-state wear equation was proposed as: [2] V = K P L 3 H {\displaystyle V=K{\frac {PL}{3H}}} where H {\displaystyle H} is the Brinell hardness expressed as Pascals, V {\displaystyle V} is the volumetric loss, P {\displaystyle P} is the normal load, and L {\displaystyle L} is the sliding distance.
In fracture mechanics, a crack growth resistance curve shows the energy required for crack extension as a function of crack length in a given material.For materials that can be modeled with linear elastic fracture mechanics (LEFM), crack extension occurs when the applied energy release rate exceeds the material's resistance to crack extension .
The strength of materials is determined using various methods of calculating the stresses and strains in structural members, such as beams, columns, and shafts. The methods employed to predict the response of a structure under loading and its susceptibility to various failure modes takes into account the properties of the materials such as its yield strength, ultimate strength, Young's modulus ...
The equation for stress intensity factor for a specimen with a single crack is given in the following equation where Y is a geometric parameter, s is the stress being applied and a is the crack length. For an edge crack ‘a’ is the total length of the crack where as a crack not on the edge has a crack length of ‘2a’.
The resistance of materials and structures to abrasion can be measured by a variety of test methods. [2] These often use a specified abrasive or other controlled means of abrasion. Under the conditions of the test, the results can be reported or can be compared items subjected to similar tests.