Ad
related to: dna damage oocytes found in humans due
Search results
Results From The WOW.Com Content Network
Oocyte abnormalities can be caused by a variety of genetic factors affecting different stages in meiosis. [1] Moreover, ageing is associated with oocyte abnormalities since higher maternal age is associated with oocytes with a reduced gene expression of spindle assembly checkpoints which are important in maintaining stability in the genome.
The DNA of a cell is vulnerable to the damaging effect of oxidative free radicals produced as byproducts of cellular metabolism. DNA damage occurring in oocytes, if not repaired, can be lethal and result in reduced fecundity and loss of potential progeny.
In mammalian females the period of arrest may last for years. During this period of arrest, oocytes are subject to spontaneous DNA damage including double-strand breaks. However, the oocytes can efficiently repair DNA double-strand breaks, allowing the restoration of genetic integrity and the protection of offspring health. [8]
This is an accepted version of this page This is the latest accepted revision, reviewed on 26 January 2025. Cell division producing haploid gametes For the figure of speech, see Meiosis (figure of speech). For the process whereby cell nuclei divide to produce two copies of themselves, see Mitosis. For excessive constriction of the pupils, see Miosis. For the parasitic infestation, see Myiasis ...
The dictyate appears to be an adaptation for efficiently removing damages in germ line DNA by homologous recombinational repair. [5] Prophase arrested oocytes have a high capability for efficient repair of DNA damages. [5] DNA repair capability appears to be a key quality control mechanism in the female germ line and a critical determinant of ...
Mammalian oocytes are maintained in meiotic prophase arrest for a very long time—months in mice, years in humans. Initially, the arrest is due to lack of sufficient cell cycle proteins to allow meiotic progression. However, as the oocyte grows, these proteins are synthesized, and meiotic arrest becomes dependent on cyclic AMP. [4]
In humans and other mammals, DNA damage occurs frequently and DNA repair processes have evolved to compensate. [11] In estimates made for mice, DNA lesions occur on average 25 to 115 times per minute in each cell, or about 36,000 to 160,000 per cell per day. [12] Some DNA damage may remain in any cell despite the action of repair processes.
Bile acids cause DNA damage, including oxidative DNA damage, double-strand DNA breaks, aneuploidy and chromosome breakage. [55] High-normal levels of the bile acid deoxycholic acid cause apoptosis in human colon cells, [ 56 ] but may also lead to colon cancer if repair and apoptotic defenses are insufficient.