Search results
Results From The WOW.Com Content Network
Osmoregulation is the active regulation of the osmotic pressure of an organism's body fluids, detected by osmoreceptors, to maintain the homeostasis of the organism's water content; that is, it maintains the fluid balance and the concentration of electrolytes (salts in solution which in this case is represented by body fluid) to keep the body fluids from becoming too diluted or concentrated.
The membrane separation of the FO process in effect results in a "trade" between the solutes of the feed solution and the draw solution. The forward osmosis process is also known as osmosis or in the case of a number of companies who have coined their own terminology 'engineered osmosis' and 'manipulated osmosis'.
The process of osmosis over a semipermeable membrane.The blue dots represent particles driving the osmotic gradient. Osmosis (/ ɒ z ˈ m oʊ s ɪ s /, US also / ɒ s-/) [1] is the spontaneous net movement or diffusion of solvent molecules through a selectively-permeable membrane from a region of high water potential (region of lower solute concentration) to a region of low water potential ...
The epithelium in the thick segment of the descending limb consists of low simple cuboidal cells, which resemble those found in the proximal tubule.In contrast, the epithelium transitions to a simple squamous type in the thin segment, which is less metabolically active and has minimal surface specializations.
Pressure retarded osmosis (PRO) is a technique to separate a solvent (for example, fresh water) from a solution that is more concentrated (e.g. sea water) and also pressurized. A semipermeable membrane allows the solvent to pass to the concentrated solution side by osmosis . [ 1 ]
The 300 mOsm/L fluid from the loop loses water to the higher concentration outside the loop and increases in tonicity until it reaches its maximum at the bottom of the loop. This area represents the highest concentration in the nephron, but the collecting duct can reach this same tonicity with maximum ADH [clarification needed] effect. [3]
The left-behind "concentrate" passes along the saline side of the membrane and flushes away the salt and other remnants. The percentage of desalinated water is the "recovery ratio". This varies with salinity and system design parameters: typically 20% for small seawater systems, 40% – 50% for larger seawater systems, and 80% – 85% for ...
Since these systems do not work by exchanging ions, like traditional water softeners do, one benefit claimed for the user is the elimination of the need to add salt to the system. Such systems do not remove minerals from the water itself. Rather, they can only alter the downstream effects that the mineral-bearing water would otherwise have.