When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Energy charge - Wikipedia

    en.wikipedia.org/wiki/Energy_charge

    We now know that most if not all anabolic and catabolic pathways are indeed controlled, directly and indirectly, by the energy charge. [5] [6] [7] In addition to direct regulation of several enzymes by adenyl nucleotides, an AMP-activated protein kinase known as AMP-K phosphorylates and thereby regulates key enzymes when the energy charge ...

  3. Anabolism - Wikipedia

    en.wikipedia.org/wiki/Anabolism

    High amounts of ATP cause cells to favor the anabolic pathway and slow catabolic activity, while excess ADP slows anabolism and favors catabolism. [10] These pathways are also regulated by circadian rhythms , with processes such as glycolysis fluctuating to match an animal's normal periods of activity throughout the day.

  4. Catabolism - Wikipedia

    en.wikipedia.org/wiki/Catabolism

    This molecule acts as a way for the cell to transfer the energy released by catabolism to the energy-requiring reactions that make up anabolism. Catabolism is a destructive metabolism and anabolism is a constructive metabolism. Catabolism, therefore, provides the chemical energy necessary for the maintenance and growth of cells.

  5. Bioenergetics - Wikipedia

    en.wikipedia.org/wiki/Bioenergetics

    Bioenergetics is a field in biochemistry and cell biology that concerns energy flow through living systems. [1] This is an active area of biological research that includes the study of the transformation of energy in living organisms and the study of thousands of different cellular processes such as cellular respiration and the many other metabolic and enzymatic processes that lead to ...

  6. Relations between heat capacities - Wikipedia

    en.wikipedia.org/wiki/Relations_between_heat...

    The heat capacity depends on how the external variables of the system are changed when the heat is supplied. If the only external variable of the system is the volume, then we can write: d S = ( ∂ S ∂ T ) V d T + ( ∂ S ∂ V ) T d V {\displaystyle dS=\left({\frac {\partial S}{\partial T}}\right)_{V}dT+\left({\frac {\partial S}{\partial V ...

  7. Cellular respiration - Wikipedia

    en.wikipedia.org/wiki/Cellular_respiration

    Cellular respiration is the process of oxidizing biological fuels using an inorganic electron acceptor, such as oxygen, to drive production of adenosine triphosphate (ATP), which contains energy. Cellular respiration may be described as a set of metabolic reactions and processes that take place in the cells of organisms to convert chemical ...

  8. Fatty acid metabolism - Wikipedia

    en.wikipedia.org/wiki/Fatty_acid_metabolism

    These processes can mainly be divided into (1) catabolic processes that generate energy and (2) anabolic processes where they serve as building blocks for other compounds. [ 1 ] In catabolism, fatty acids are metabolized to produce energy, mainly in the form of adenosine triphosphate (ATP).

  9. Thermodynamic equations - Wikipedia

    en.wikipedia.org/wiki/Thermodynamic_equations

    Just as with the internal energy version of the fundamental equation, the chain rule can be used on the above equations to find k+2 equations of state with respect to the particular potential. If Φ is a thermodynamic potential, then the fundamental equation may be expressed as: