Search results
Results From The WOW.Com Content Network
Denotes square root and is read as the square root of. Rarely used in modern mathematics without a horizontal bar delimiting the width of its argument (see the next item). For example, √2. √ (radical symbol) 1. Denotes square root and is read as the square root of. For example, +. 2.
The square function preserves the order of positive numbers: larger numbers have larger squares. In other words, the square is a monotonic function on the interval [0, +∞). On the negative numbers, numbers with greater absolute value have greater squares, so the square is a monotonically decreasing function on (−∞,0].
The same term can also be used more informally to refer to something "standard" or "classic". For example, one might say that Euclid's proof is the "canonical proof" of the infinitude of primes. There are two canonical proofs that are always used to show non-mathematicians what a mathematical proof is like:
Square number 16 as sum of gnomons. In mathematics, a square number or perfect square is an integer that is the square of an integer; [1] in other words, it is the product of some integer with itself. For example, 9 is a square number, since it equals 3 2 and can be written as 3 × 3.
unstrict inequality signs (less-than or equals to sign and greater-than or equals to sign) : 1670 (with the horizontal bar over the inequality sign, rather than below it) ...
This following list features abbreviated names of mathematical functions, function-like operators and other mathematical terminology. This list is limited to abbreviations of two or more letters (excluding number sets). The capitalization of some of these abbreviations is not standardized – different authors might use different capitalizations.
Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!
For example, [] is the smallest subring of C containing all the integers and ; it consists of all numbers of the form +, where m and n are arbitrary integers. Another example: Z [ 1 / 2 ] {\displaystyle \mathbf {Z} [1/2]} is the subring of Q consisting of all rational numbers whose denominator is a power of 2 .