Search results
Results From The WOW.Com Content Network
Endochondral ossification is the process by which most vertebrate axial skeletons form into hardened bones from cartilage. This process begins with a cartilage anlage where chondrocyte cells will congregate and start their maturation process. Once the chondrocytes have fully matured at the desired rate, the cartilage tissue will harden into ...
Diagram showing stages of endochondral ossification. Endochondral ossification is the formation of long bones and other bones. This requires a hyaline cartilage precursor. There are two centers of ossification for endochondral ossification. The primary center. In long bones, bone tissue first appears in the diaphysis (middle of shaft).
The periosteum is a membrane that covers the outer surface of all bones, [1] except at the articular surfaces (i.e. the parts within a joint space) of long bones. (At the joints of long bones the bone's outer surface is lined with "articular cartilage", a type of hyaline cartilage.)
The initiation of endochondral ossification starts by proliferation and condensation of mesenchymal cells in the area where the bone will eventually be formed. Subsequently, these mesenchymal progenitor cells differentiate into chondroblasts, which actively synthesize cartilage matrix components.
The cartilage cells or chondrocytes are contained in cavities in the matrix, called cartilage lacunae; around these, the matrix is arranged in concentric lines as if it had been formed in successive portions around the cartilage cells. This constitutes the so-called capsule of the space.
An ossification center is a point where ossification of the hyaline cartilage begins. The first step in ossification is that the chondrocytes at this point become hypertrophic and arrange themselves in rows. [1] The matrix in which they are imbedded increases in quantity, so that the cells become further separated from each other.
In a long bone it is a thin disc of hyaline cartilage that is positioned transversely between the epiphysis and metaphysis. In the long bones of humans, the epiphyseal plate disappears by twenty years of age. physis, "the growth part" metaphysis: The region of a long bone lying between the epiphysis and diaphysis.
Hyaline cartilage has fewer cells than elastic cartilage; there is more intercellular space. Hyaline cartilage is found in the nose, ears, trachea, parts of the larynx, and smaller respiratory tubes. Fibrous cartilage has the fewest cells so it has the most intercellular space. Fibrous cartilage is found in the spine and the menisci.