Search results
Results From The WOW.Com Content Network
Theorem [7] [8] — A linear map between two F-spaces (e.g. Banach spaces) is continuous if and only if its graph is closed. The theorem is a consequence of the open mapping theorem ; see § Relation to the open mapping theorem below (conversely, the open mapping theorem in turn can be deduced from the closed graph theorem).
Closed graph theorems are of particular interest in functional analysis where there are many theorems giving conditions under which a linear map with a closed graph is necessarily continuous. If f : X → Y is a function between topological spaces whose graph is closed in X × Y and if Y is a compact space then f : X → Y is continuous.
Generalized Borel Graph Theorem [11] — Let : be a linear map between two locally convex Hausdorff spaces and . If X {\displaystyle X} is the inductive limit of an arbitrary family of Banach spaces, if Y {\displaystyle Y} is a K-analytic space, and if the graph of u {\displaystyle u} is closed in X × Y , {\displaystyle X\times Y,} then u ...
Homeomorphism (graph theory) – Concept in graph theory (closely related to graph subdivision) Homotopy#Isotopy – Continuous deformation between two continuous functions; Mapping class group – Group of isotopy classes of a topological automorphism group; Poincaré conjecture – Theorem in geometric topology; Universal homeomorphism
A path in the projective plane is a continuous map from the unit interval [0,1]. We can lift such a path to the sphere by choosing one of the two sphere points mapping to the first point on the path, then maintain continuity. In this case, each of the two starting points forces a unique path on the sphere, the lift of the path in the projective ...
In graph theory, a planar graph is a graph that can be embedded in the plane, i.e., it can be drawn on the plane in such a way that its edges intersect only at their endpoints. In other words, it can be drawn in such a way that no edges cross each other. [9] Such a drawing is called a plane graph or planar embedding of the graph.
Geometric graph theory in the broader sense is a large and amorphous subfield of graph theory, concerned with graphs defined by geometric means. In a stricter sense, geometric graph theory studies combinatorial and geometric properties of geometric graphs, meaning graphs drawn in the Euclidean plane with possibly intersecting straight-line edges, and topological graphs, where the edges are ...
A real function that is a function from real numbers to real numbers can be represented by a graph in the Cartesian plane; such a function is continuous if, roughly speaking, the graph is a single unbroken curve whose domain is the entire real line. A more mathematically rigorous definition is given below. [8]