Search results
Results From The WOW.Com Content Network
Long division is the standard algorithm used for pen-and-paper division of multi-digit numbers expressed in decimal notation. It shifts gradually from the left to the right end of the dividend, subtracting the largest possible multiple of the divisor (at the digit level) at each stage; the multiples then become the digits of the quotient, and the final difference is then the remainder.
As with any calculation that divides a binary data word into short blocks and treats the blocks as numbers, any two systems expecting to get the same result should preserve the ordering of bits in the data word. In this respect, the Fletcher checksum is not different from other checksum and CRC algorithms and needs no special explanation.
Logical shifts can be useful as efficient ways to perform multiplication or division of unsigned integers by powers of two. Shifting left by n bits on a signed or unsigned binary number has the effect of multiplying it by 2 n. Shifting right by n bits on an unsigned binary number has the effect of dividing it by 2 n (rounding towards 0).
In binary arithmetic, division by two can be performed by a bit shift operation that shifts the number one place to the right. This is a form of strength reduction optimization. For example, 1101001 in binary (the decimal number 105), shifted one place to the right, is 110100 (the decimal number 52): the lowest order bit, a 1, is removed.
Shifting left by n bits on a signed or unsigned binary number has the effect of multiplying it by 2 n. Shifting right by n bits on a two's complement signed binary number has the effect of dividing it by 2 n, but it always rounds down (towards negative infinity). This is different from the way rounding is usually done in signed integer division ...
A diagram showing how manipulating the least significant bits of a color can have a very subtle and generally unnoticeable effect on the color. In this diagram, green is represented by its RGB value, both in decimal and in binary. The red box surrounding the last two bits illustrates the least significant bits changed in the binary representation.
You will note that the code corresponds to the lsbit-first byte-at-a-time algorithm presented here, and the table is generated using the bit-at-a-time code. Function CRC32 Input: data: Bytes // Array of bytes Output: crc32: UInt32 // 32-bit unsigned CRC-32 value // Initialize CRC-32 to starting value crc32 ← 0xFFFFFFFF
At its present state the article is just a long list of different division algorithms. — Preceding unsigned comment added by 87.92.32.62 11:32, 28 April 2019 (UTC) When working with fixed-length numbers (floating point as well as fixed-point arithmetic), the best algorithm strongly depends of the used hardware and software technology. It is ...