Search results
Results From The WOW.Com Content Network
In mathematics, an injective function (also known as injection, or one-to-one function [1]) is a function f that maps distinct elements of its domain to distinct elements of its codomain; that is, x 1 ≠ x 2 implies f(x 1) ≠ f(x 2) (equivalently by contraposition, f(x 1) = f(x 2) implies x 1 = x 2).
A faithful functor need not be injective on objects or morphisms. That is, two objects X and X′ may map to the same object in D (which is why the range of a full and faithful functor is not necessarily isomorphic to C), and two morphisms f : X → Y and f′ : X′ → Y′ (with different domains/codomains) may map to the same morphism in D.
Injective composition: the second function need not be injective. A function is injective (one-to-one) if each possible element of the codomain is mapped to by at most one argument. Equivalently, a function is injective if it maps distinct arguments to distinct images. An injective function is an injection. [1] The formal definition is the ...
In other words, the function value f(x) in the codomain X is always the same as the input element x in the domain X. The identity function on X is clearly an injective function as well as a surjective function (its codomain is also its range), so it is bijective. [2] The identity function f on X is often denoted by id X.
The function g : R → R defined by g(x) = x 2 is not surjective, since there is no real number x such that x 2 = −1. However, the function g : R → R ≥0 defined by g(x) = x 2 (with the restricted codomain) is surjective, since for every y in the nonnegative real codomain Y, there is at least one x in the real domain X such that x 2 = y.
For any set X, the identity function 1 X: X → X, 1 X (x) = x is bijective. The function f: R → R, f(x) = 2x + 1 is bijective, since for each y there is a unique x = (y − 1)/2 such that f(x) = y. More generally, any linear function over the reals, f: R → R, f(x) = ax + b (where a is non-zero) is a bijection.
This and other analogous injective functions [3] from substructures are sometimes called natural injections. Given any morphism f {\displaystyle f} between objects X {\displaystyle X} and Y {\displaystyle Y} , if there is an inclusion map ι : A → X {\displaystyle \iota :A\to X} into the domain X {\displaystyle X} , then one can form the ...
Here F X is the cumulative distribution function of X, f X is the corresponding probability density function, Q X (p) is the corresponding inverse cumulative distribution function also called the quantile function, [2] and the integrals are of the Riemann–Stieltjes kind.