Search results
Results From The WOW.Com Content Network
In mathematical analysis, the Dirac delta function (or δ distribution), also known as the unit impulse, [1] is a generalized function on the real numbers, whose value is zero everywhere except at zero, and whose integral over the entire real line is equal to one. [2] [3] [4] Thus it can be represented heuristically as
The impulse response of a linear transformation is the image of Dirac's delta function under the transformation, analogous to the fundamental solution of a partial differential operator. It is usually easier to analyze systems using transfer functions as opposed to impulse responses. The transfer function is the Laplace transform of the impulse ...
In classical mechanics, impulse (symbolized by J or Imp) is the change in momentum of an object. If the initial momentum of an object is p 1, and a subsequent momentum is p 2, the object has received an impulse J: =. Momentum is a vector quantity, so impulse is also a vector quantity.
The graph of the Dirac comb function is an infinite series of Dirac delta functions spaced at intervals of T. In mathematics, a Dirac comb (also known as sha function, impulse train or sampling function) is a periodic function with the formula := = for some given period . [1]
A more general term for the PSF is the system's impulse response; the PSF is the impulse response or impulse response function (IRF) of a focused optical imaging system. The PSF in many contexts can be thought of as the shapeless blob in an image that should represent a single point object. We can consider this as a spatial impulse response ...
Impulse (physics), in mechanics, the change of momentum of an object; the integral of a force with respect to time; Impulse noise (disambiguation) Specific impulse, the change in momentum per unit mass of propellant of a propulsion system; Impulse function, a mathematical function of an infinitely high amplitude and infinitesimal duration
Impulse invariance is a technique for designing discrete-time infinite-impulse-response (IIR) filters from continuous-time filters in which the impulse response of the continuous-time system is sampled to produce the impulse response of the discrete-time system.
The impulse response function provides that factor as a function of the elapsed time since each input value occurred. In physics , wherever there is a linear system with a " superposition principle ", a convolution operation makes an appearance.