When.com Web Search

  1. Ad

    related to: hamilton's principle of optics

Search results

  1. Results From The WOW.Com Content Network
  2. Hamiltonian optics - Wikipedia

    en.wikipedia.org/wiki/Hamiltonian_optics

    The general results presented above for Hamilton's principle can be applied to optics using the Lagrangian defined in Fermat's principle.The Euler-Lagrange equations with parameter σ =x 3 and N=2 applied to Fermat's principle result in ˙ = with k = 1, 2 and where L is the optical Lagrangian and ˙ = /.

  3. Hamilton's optico-mechanical analogy - Wikipedia

    en.wikipedia.org/wiki/Hamilton's_optico...

    Hamilton's optico-mechanical analogy is a conceptual parallel between trajectories in classical mechanics and wavefronts in optics, introduced by William Rowan Hamilton around 1831. [1] It may be viewed as linking Huygens' principle of optics with Maupertuis' principle of mechanics.

  4. Hamilton's principle - Wikipedia

    en.wikipedia.org/wiki/Hamilton's_principle

    Hamilton's principle states that the true evolution q(t) of a system described by N generalized coordinates q = (q 1, q 2, ..., q N) between two specified states q 1 = q(t 1) and q 2 = q(t 2) at two specified times t 1 and t 2 is a stationary point (a point where the variation is zero) of the action functional [] = ((), ˙ (),) where (, ˙,) is the Lagrangian function for the system.

  5. Fermat's principle - Wikipedia

    en.wikipedia.org/wiki/Fermat's_principle

    This has the form of Hamilton's principle in classical mechanics, except that the time dimension is missing: the third spatial coordinate in optics takes the role of time in mechanics. [33] The optical Lagrangian is the function which, when integrated w.r.t. the parameter of the path, yields the OPL; it is the foundation of Lagrangian and ...

  6. Lagrangian mechanics - Wikipedia

    en.wikipedia.org/wiki/Lagrangian_mechanics

    In this formulation, particles travel every possible path between the initial and final states; the probability of a specific final state is obtained by summing over all possible trajectories leading to it. In the classical regime, the path integral formulation cleanly reproduces Hamilton's principle, and Fermat's principle in optics.

  7. Hamilton–Jacobi equation - Wikipedia

    en.wikipedia.org/wiki/Hamilton–Jacobi_equation

    In physics, the Hamilton–Jacobi equation, named after William Rowan Hamilton and Carl Gustav Jacob Jacobi, is an alternative formulation of classical mechanics, equivalent to other formulations such as Newton's laws of motion, Lagrangian mechanics and Hamiltonian mechanics.

  8. Calculus of variations - Wikipedia

    en.wikipedia.org/wiki/Calculus_of_Variations

    A related problem is posed by Fermat's principle: light follows the path of shortest optical length connecting two points, which depends upon the material of the medium. One corresponding concept in mechanics is the principle of least/stationary action. Many important problems involve functions of several variables.

  9. Jenifer Haselgrove - Wikipedia

    en.wikipedia.org/wiki/Jenifer_Haselgrove

    Haselgrove developed her equations at Cambridge University in the 1950s, as a student under Kenneth Budden, by re-applying the earlier work of William Rowan Hamilton and Hamilton's principle in geometrical optics [4] to radio propagation in a plasma. [5] Indeed, the application of Haselgrove's equations is often termed Hamiltonian ray tracing.