Ad
related to: fluorine or chlorine more electronegative
Search results
Results From The WOW.Com Content Network
Electronegativity is not a uniquely defined property and may depend on the definition. The suggested values are all taken from WebElements as a consistent set. Many of the highly radioactive elements have values that must be predictions or extrapolations, but are unfortunately not marked as such.
The higher the associated electronegativity, the more an atom or a substituent group attracts electrons. Electronegativity serves as a simple way to quantitatively estimate the bond energy, and the sign and magnitude of a bond's chemical polarity, which characterizes a bond along the continuous scale from covalent to ionic bonding.
Corresponding to periodic trends, it is intermediate in electronegativity between fluorine and bromine (F: 3.98, Cl: 3.16, Br: 2.96, I: 2.66), and is less reactive than fluorine and more reactive than bromine. It is also a weaker oxidising agent than fluorine, but a stronger one than bromine.
Generally, the higher these values are (including electronegativity) the more nonmetallic the element tends to be. [68] For example, the chemically very active nonmetals fluorine, chlorine, bromine, and iodine have an average electronegativity of 3.19—a figure [i] higher than that of any metallic element.
A replacement reaction where gaseous hydrogen chloride and fluorine gas react to release diatomic chlorine gas (because fluorine is more electronegative): 2 HCl + F 2 2 HF + Cl 2 ↑ {\displaystyle {\ce {2HCl + F_2 -> 2HF + Cl_2 ^}}}
Because carbon is more electronegative than hydrogen, the electron density in a C-H bond will be shortened and the C-F bond will be elongated. The same trend also holds for the chlorinated analogs of methane, although the effect is less dramatic because chlorine is less electronegative than fluorine. [2]
Chlorine trifluoride (ClF 3) is a colourless gas that condenses to a green liquid, and freezes to a white solid. It is made by reacting chlorine with an excess of fluorine at 250 °C in a nickel tube. It reacts more violently than fluorine, often explosively. The molecule is planar and T-shaped. It is used in the manufacture of uranium ...
The nonmetallic elements are sometimes instead divided into two to seven alternative classes or sets according to, for example, electronegativity; the relative homogeneity of the halogens; molecular structure; the peculiar nature of hydrogen; the corrosive nature of oxygen and the halogens; their respective groups; and variations thereupon.