When.com Web Search

  1. Ad

    related to: graph theory proof examples

Search results

  1. Results From The WOW.Com Content Network
  2. Graph theory - Wikipedia

    en.wikipedia.org/wiki/Graph_theory

    In mathematics and computer science, graph theory is the study of graphs, which are mathematical structures used to model pairwise relations between objects. A graph in this context is made up of vertices (also called nodes or points ) which are connected by edges (also called arcs , links or lines ).

  3. Tutte theorem - Wikipedia

    en.wikipedia.org/wiki/Tutte_theorem

    Example of a graph and one of its perfect matchings (in red). In the mathematical discipline of graph theory, the Tutte theorem, named after William Thomas Tutte, is a characterization of finite undirected graphs with perfect matchings. It is a special case of the Tutte–Berge formula.

  4. Robertson–Seymour theorem - Wikipedia

    en.wikipedia.org/wiki/Robertson–Seymour_theorem

    Such proofs of polynomiality are non-constructive: they prove polynomiality of problems without providing an explicit polynomial-time algorithm. [14] In many specific cases, checking whether a graph is in a given minor-closed family can be done more efficiently: for example, checking whether a graph is planar can be done in linear time.

  5. Hall's marriage theorem - Wikipedia

    en.wikipedia.org/wiki/Hall's_marriage_theorem

    The graph theoretic formulation of Marshal Hall's extension of the marriage theorem can be stated as follows: Given a bipartite graph with sides A and B, we say that a subset C of B is smaller than or equal in size to a subset D of A in the graph if there exists an injection in the graph (namely, using only edges of the graph) from C to D, and ...

  6. Ore's theorem - Wikipedia

    en.wikipedia.org/wiki/Ore's_theorem

    Ore's theorem is a result in graph theory proved in 1960 by Norwegian mathematician Øystein Ore. It gives a sufficient condition for a graph to be Hamiltonian, essentially stating that a graph with sufficiently many edges must contain a Hamilton cycle.

  7. Handshaking lemma - Wikipedia

    en.wikipedia.org/wiki/Handshaking_lemma

    In graph theory, the handshaking lemma is the statement that, in every finite undirected graph, the number of vertices that touch an odd number of edges is even. For example, if there is a party of people who shake hands, the number of people who shake an odd number of other people's hands is even. [1]

  8. Kőnig's theorem (graph theory) - Wikipedia

    en.wikipedia.org/wiki/Kőnig's_theorem_(graph...

    An example of a bipartite graph, with a maximum matching (blue) and minimum vertex cover (red) both of size six. In the mathematical area of graph theory, Kőnig's theorem, proved by Dénes Kőnig (), describes an equivalence between the maximum matching problem and the minimum vertex cover problem in bipartite graphs.

  9. Tree (graph theory) - Wikipedia

    en.wikipedia.org/wiki/Tree_(graph_theory)

    In graph theory, a tree is an undirected graph in which any two vertices are connected by exactly one path, or equivalently a connected acyclic undirected graph. [1] A forest is an undirected graph in which any two vertices are connected by at most one path, or equivalently an acyclic undirected graph, or equivalently a disjoint union of trees.