When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. IEEE 754-1985 - Wikipedia

    en.wikipedia.org/wiki/IEEE_754-1985

    Now we can read off the fraction and the exponent: the fraction is .01 2 and the exponent is −3. As illustrated in the pictures, the three fields in the IEEE 754 representation of this number are: sign = 0, because the number is positive. (1 indicates negative.) biased exponent = −3 + the "bias".

  3. List of open-source software for mathematics - Wikipedia

    en.wikipedia.org/wiki/List_of_open-source...

    PARI/GP is a computer algebra system that facilitates number-theory computation. Besides support of factoring, algebraic number theory, and analysis of elliptic curves, it works with mathematical objects like matrices, polynomials, power series , algebraic numbers, and transcendental functions . [ 3 ]

  4. Significand - Wikipedia

    en.wikipedia.org/wiki/Significand

    The fractional part is called the fraction. To understand both terms, notice that in binary, 1 + mantissa ≈ significand, and the correspondence is exact when storing a power of two. This fact allows for a fast approximation of the base-2 logarithm, leading to algorithms e.g. for computing the fast square-root and fast inverse-square-root.

  5. Half-precision floating-point format - Wikipedia

    en.wikipedia.org/wiki/Half-precision_floating...

    The half-precision binary floating-point exponent is encoded using an offset-binary representation, with the zero offset being 15; also known as exponent bias in the IEEE 754 standard. [9] E min = 00001 2 − 01111 2 = −14; E max = 11110 2 − 01111 2 = 15; Exponent bias = 01111 2 = 15

  6. Fraction - Wikipedia

    en.wikipedia.org/wiki/Fraction

    A simple fraction (also known as a common fraction or vulgar fraction) [n 1] is a rational number written as a/b or ⁠ ⁠, where a and b are both integers. [9] As with other fractions, the denominator (b) cannot be zero. Examples include ⁠ 1 / 2 ⁠, − ⁠ 8 / 5 ⁠, ⁠ −8 / 5 ⁠, and ⁠ 8 / −5 ⁠.

  7. Exponentiation by squaring - Wikipedia

    en.wikipedia.org/wiki/Exponentiation_by_squaring

    The method is based on the observation that, for any integer >, one has: = {() /, /,. If the exponent n is zero then the answer is 1. If the exponent is negative then we can reuse the previous formula by rewriting the value using a positive exponent.

  8. Scientific notation - Wikipedia

    en.wikipedia.org/wiki/Scientific_notation

    The integer n is called the exponent and the real number m is called the significand or mantissa. [1] The term "mantissa" can be ambiguous where logarithms are involved, because it is also the traditional name of the fractional part of the common logarithm. If the number is negative then a minus sign precedes m, as in

  9. Windows Calculator - Wikipedia

    en.wikipedia.org/wiki/Windows_Calculator

    A simple arithmetic calculator was first included with Windows 1.0. [5]In Windows 3.0, a scientific mode was added, which included exponents and roots, logarithms, factorial-based functions, trigonometry (supports radian, degree and gradians angles), base conversions (2, 8, 10, 16), logic operations, statistical functions such as single variable statistics and linear regression.