Ad
related to: best tool for mapping processes in machine learning python book
Search results
Results From The WOW.Com Content Network
scikit-learn (formerly scikits.learn and also known as sklearn) is a free and open-source machine learning library for the Python programming language. [3] It features various classification, regression and clustering algorithms including support-vector machines, random forests, gradient boosting, k-means and DBSCAN, and is designed to interoperate with the Python numerical and scientific ...
A self-organizing map (SOM) or self-organizing feature map (SOFM) is an unsupervised machine learning technique used to produce a low-dimensional (typically two-dimensional) representation of a higher-dimensional data set while preserving the topological structure of the data.
Empirically, for machine learning heuristics, choices of a function that do not satisfy Mercer's condition may still perform reasonably if at least approximates the intuitive idea of similarity. [6] Regardless of whether k {\displaystyle k} is a Mercer kernel, k {\displaystyle k} may still be referred to as a "kernel".
Generative topographic map (GTM) is a machine learning method that is a probabilistic counterpart of the self-organizing map (SOM), is probably convergent and does not require a shrinking neighborhood or a decreasing step size.
It can map Illumina and SOLiD reads. Unlike most mapping programs, speed increases for longer read lengths. Yes Free, GPL [49] PRIMEX Indexes the genome with a k-mer lookup table with full sensitivity up to an adjustable number of mismatches. It is best for mapping 15-60 bp sequences to a genome. No No Yes No, multiple processes per search 2003
spaCy (/ s p eɪ ˈ s iː / spay-SEE) is an open-source software library for advanced natural language processing, written in the programming languages Python and Cython. [3] [4] The library is published under the MIT license and its main developers are Matthew Honnibal and Ines Montani, the founders of the software company Explosion.
2005 DARPA Grand Challenge winner Stanley performed SLAM as part of its autonomous driving system. A map generated by a SLAM Robot. Simultaneous localization and mapping (SLAM) is the computational problem of constructing or updating a map of an unknown environment while simultaneously keeping track of an agent's location within it.
In statistics and machine learning, the hierarchical Dirichlet process (HDP) is a nonparametric Bayesian approach to clustering grouped data. [ 1 ] [ 2 ] It uses a Dirichlet process for each group of data, with the Dirichlet processes for all groups sharing a base distribution which is itself drawn from a Dirichlet process.