When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Caputo fractional derivative - Wikipedia

    en.wikipedia.org/wiki/Caputo_fractional_derivative

    In mathematics, the Caputo fractional derivative, also called Caputo-type fractional derivative, is a generalization of derivatives for non-integer orders named after Michele Caputo. Caputo first defined this form of fractional derivative in 1967.

  3. Convex optimization - Wikipedia

    en.wikipedia.org/wiki/Convex_optimization

    In LP, the objective and constraint functions are all linear. Quadratic programming are the next-simplest. In QP, the constraints are all linear, but the objective may be a convex quadratic function. Second order cone programming are more general. Semidefinite programming are more general. Conic optimization are even more general - see figure ...

  4. Floor and ceiling functions - Wikipedia

    en.wikipedia.org/wiki/Floor_and_ceiling_functions

    The fractional part function has Fourier series expansion [19] {} = = ⁡ for x not an integer. At points of discontinuity, a Fourier series converges to a value that is the average of its limits on the left and the right, unlike the floor, ceiling and fractional part functions: for y fixed and x a multiple of y the Fourier series given ...

  5. Fractional calculus - Wikipedia

    en.wikipedia.org/wiki/Fractional_calculus

    The classical form of fractional calculus is given by the Riemann–Liouville integral, which is essentially what has been described above. The theory of fractional integration for periodic functions (therefore including the "boundary condition" of repeating after a period) is given by the Weyl integral.

  6. Fractional-order system - Wikipedia

    en.wikipedia.org/wiki/Fractional-order_system

    By applying a Laplace transform to the LTI system above, the transfer function becomes = () = = =For general orders and this is a non-rational transfer function. Non-rational transfer functions cannot be written as an expansion in a finite number of terms (e.g., a binomial expansion would have an infinite number of terms) and in this sense fractional orders systems can be said to have the ...

  7. Fractional programming - Wikipedia

    en.wikipedia.org/wiki/Fractional_programming

    In mathematical optimization, fractional programming is a generalization of linear-fractional programming. The objective function in a fractional program is a ratio of two functions that are in general nonlinear. The ratio to be optimized often describes some kind of efficiency of a system.

  8. 2 Artificial Intelligence (AI) Stocks That Could Help Make ...

    www.aol.com/finance/2-artificial-intelligence-ai...

    DeepSeek just took the market by storm, launching a large-language artificial intelligence (AI) model very similar to OpenAI's ChatGPT but at a fraction of the development cost, at least according ...

  9. List of mathematical functions - Wikipedia

    en.wikipedia.org/wiki/List_of_mathematical_functions

    Thomae's function: is a function that is continuous at all irrational numbers and discontinuous at all rational numbers. It is also a modification of Dirichlet function and sometimes called Riemann function. Kronecker delta function: is a function of two variables, usually integers, which is 1 if they are equal, and 0 otherwise.