When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Hydraulic diameter - Wikipedia

    en.wikipedia.org/wiki/Hydraulic_diameter

    The need for the hydraulic diameter arises due to the use of a single dimension in the case of a dimensionless quantity such as the Reynolds number, which prefers a single variable for flow analysis rather than the set of variables as listed in the table below. The Manning formula contains a quantity called the hydraulic radius.

  3. Hazen–Williams equation - Wikipedia

    en.wikipedia.org/wiki/Hazen–Williams_equation

    It takes energy to push a fluid through a pipe, and Antoine de Chézy discovered that the hydraulic head loss was proportional to the velocity squared. [5] Consequently, the Chézy formula relates hydraulic slope S (head loss per unit length) to the fluid velocity V and hydraulic radius R: = =

  4. Manning formula - Wikipedia

    en.wikipedia.org/wiki/Manning_formula

    For channels of a given width, the hydraulic radius is greater for deeper channels. In wide rectangular channels, the hydraulic radius is approximated by the flow depth. The hydraulic radius is not half the hydraulic diameter as the name may suggest, but one quarter in the case of a full pipe. It is a function of the shape of the pipe, channel ...

  5. Darcy–Weisbach equation - Wikipedia

    en.wikipedia.org/wiki/Darcy–Weisbach_equation

    , the hydraulic diameter of the pipe (for a pipe of circular section, this equals D; otherwise D H = 4A/P for a pipe of cross-sectional area A and perimeter P) (m); v {\displaystyle \langle v\rangle } , the mean flow velocity , experimentally measured as the volumetric flow rate Q per unit cross-sectional wetted area (m/s);

  6. Equivalent radius - Wikipedia

    en.wikipedia.org/wiki/Equivalent_radius

    The hydraulic diameter is similarly defined as 4 times the cross-sectional area of a pipe A, divided by its "wetted" perimeter P. For a circular pipe of radius R, at full flow, this is = = as one would expect. This is equivalent to the above definition of the 2D mean diameter.

  7. Chézy formula - Wikipedia

    en.wikipedia.org/wiki/Chézy_formula

    is the hydraulic radius, which is the cross-sectional area of flow divided by the wetted perimeter (for a wide channel this is approximately equal to the water depth) [m]; is Manning's coefficient [time/length 1/3]; and; is a constant; k = 1 when using SI units and k = 1.49 when using BG units.

  8. Wetted perimeter - Wikipedia

    en.wikipedia.org/wiki/Wetted_perimeter

    The length of line of the intersection of channel wetted surface with a cross sectional plane normal to the flow direction. The term wetted perimeter is common in civil engineering, environmental engineering, hydrology, geomorphology, and heat transfer applications; it is associated with the hydraulic diameter or hydraulic radius. Engineers ...

  9. Hagen–Poiseuille equation - Wikipedia

    en.wikipedia.org/wiki/Hagen–Poiseuille_equation

    R is the pipe radius, A is the cross-sectional area of pipe. The equation does not hold close to the pipe entrance. [8]: 3 The equation fails in the limit of low viscosity, wide and/or short pipe. Low viscosity or a wide pipe may result in turbulent flow, making it necessary to use more complex models, such as the Darcy–Weisbach equation.