Search results
Results From The WOW.Com Content Network
Nuclear fusion is the process that powers active or main-sequence stars and other high-magnitude stars, where large amounts of energy are released. A nuclear fusion process that produces atomic nuclei lighter than iron-56 or nickel-62 will generally release energy.
At the Sun's core temperature of 15.5 million K the PP process is dominant. The PP process and the CNO process are equal at around 20 MK. [1] Scheme of the proton–proton branch I reaction. The proton–proton chain, also commonly referred to as the p–p chain, is one of two known sets of nuclear fusion reactions by which stars convert ...
Hydrogen fusion (nuclear fusion of four protons to form a helium-4 nucleus [20]) is the dominant process that generates energy in the cores of main-sequence stars. It is also called "hydrogen burning", which should not be confused with the chemical combustion of hydrogen in an oxidizing atmosphere.
Muon-catalyzed fusion (abbreviated as μCF or MCF) is a process allowing nuclear fusion to take place at temperatures significantly lower than the temperatures required for thermonuclear fusion, even at room temperature or lower. It is one of the few known ways of catalyzing nuclear fusion reactions.
The Joint European Torus (JET) magnetic fusion experiment in 1991. Fusion power is a proposed form of power generation that would generate electricity by using heat from nuclear fusion reactions. In a fusion process, two lighter atomic nuclei combine to form a heavier nucleus, while releasing energy. Devices designed to harness this energy are ...
The first successful man-made fusion device was the boosted fission weapon tested in 1951 in the Greenhouse Item test. The first true fusion weapon was 1952's Ivy Mike, and the first practical example was 1954's Castle Bravo. In these devices, the energy released by a fission explosion compresses and heats the fuel, starting a fusion reaction.
The entire degenerate core is at the same temperature and pressure, so when its density becomes high enough, fusion via the triple-alpha process rate starts throughout the core. The core is unable to expand in response to the increased energy production until the pressure is high enough to lift the degeneracy.
Deuterium–tritium fusion (DTF) is a type of nuclear fusion in which one deuterium (2 H) nucleus (deuteron) fuses with one tritium (3 H) nucleus (triton), giving one helium-4 nucleus, one free neutron, and 17.6 MeV of total energy coming from both the neutron and helium. It is the best known fusion reaction for fusion power and thermonuclear ...