When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Euclidean distance matrix - Wikipedia

    en.wikipedia.org/wiki/Euclidean_distance_matrix

    In mathematics, a Euclidean distance matrix is an n×n matrix representing the spacing of a set of n points in Euclidean space. For points x 1 , x 2 , … , x n {\displaystyle x_{1},x_{2},\ldots ,x_{n}} in k -dimensional space ℝ k , the elements of their Euclidean distance matrix A are given by squares of distances between them.

  3. Distance matrix - Wikipedia

    en.wikipedia.org/wiki/Distance_matrix

    In general, a distance matrix is a weighted adjacency matrix of some graph. In a network, a directed graph with weights assigned to the arcs, the distance between two nodes of the network can be defined as the minimum of the sums of the weights on the shortest paths joining the two nodes (where the number of steps in the path is bounded). [2]

  4. Euclidean distance - Wikipedia

    en.wikipedia.org/wiki/Euclidean_distance

    In mathematics, the Euclidean distance between two points in Euclidean space is the length of the line segment between them. It can be calculated from the Cartesian coordinates of the points using the Pythagorean theorem , and therefore is occasionally called the Pythagorean distance .

  5. Matrix norm - Wikipedia

    en.wikipedia.org/wiki/Matrix_norm

    Suppose a vector norm ‖ ‖ on and a vector norm ‖ ‖ on are given. Any matrix A induces a linear operator from to with respect to the standard basis, and one defines the corresponding induced norm or operator norm or subordinate norm on the space of all matrices as follows: ‖ ‖, = {‖ ‖: ‖ ‖ =} = {‖ ‖ ‖ ‖:} . where denotes the supremum.

  6. Distance correlation - Wikipedia

    en.wikipedia.org/wiki/Distance_correlation

    One first computes the distance correlation (involving the re-centering of Euclidean distance matrices) between two random vectors, and then compares this value to the distance correlations of many shuffles of the data. Several sets of (x, y) points, with the distance correlation coefficient of x and y for each set.

  7. Metric space - Wikipedia

    en.wikipedia.org/wiki/Metric_space

    Wasserstein metrics measure the distance between two measures on the same metric space. The Wasserstein distance between two measures is, roughly speaking, the cost of transporting one to the other. The set of all m by n matrices over some field is a metric space with respect to the rank distance (,) = ().

  8. Cosine similarity - Wikipedia

    en.wikipedia.org/wiki/Cosine_similarity

    The normalized angle, referred to as angular distance, between any two vectors and is a formal distance metric and can be calculated from the cosine similarity. [5] The complement of the angular distance metric can then be used to define angular similarity function bounded between 0 and 1, inclusive.

  9. Distance matrices in phylogeny - Wikipedia

    en.wikipedia.org/wiki/Distance_matrices_in_phylogeny

    Distance matrices are used in phylogeny as ... (such as euclidean distance) ... to geographic distance: the distance between two cities may be 100 miles "as the crow ...