Search results
Results From The WOW.Com Content Network
The SI unit of absolute thermal resistance is kelvins per watt (K/W) or the equivalent degrees Celsius per watt (°C/W) – the two are the same since the intervals are equal: ΔT = 1 K = 1 °C. The thermal resistance of materials is of great interest to electronic engineers because most electrical components generate heat and need to be cooled.
The thermal conductivity of a material is a measure of its ability to conduct heat.It is commonly denoted by , , or and is measured in W·m −1 ·K −1.. Heat transfer occurs at a lower rate in materials of low thermal conductivity than in materials of high thermal conductivity.
This page was last edited on 24 May 2024, at 07:30 (UTC).; Text is available under the Creative Commons Attribution-ShareAlike 4.0 License; additional terms may apply ...
Simple solutions for transient cooling of an object may be obtained when the internal thermal resistance within the object is small in comparison to the resistance to heat transfer away from the object's surface (by external conduction or convection), which is the condition for which the Biot number is less than about 0.1.
The heat sink thermal resistance model consists of two resistances, namely the resistance in the heat sink base, , and the resistance in the fins, . The heat sink base thermal resistance, , can be written as follows if the source is a uniformly applied the heat sink base. If it is not, then the base resistance is primarily spreading resistance:
Now, thermal gradients within the sphere become important, even though the sphere material is a good conductor. Equivalently, if the sphere is made of a poorly conducting (thermally insulating) material, such as wood or styrofoam, the interior resistance to heat flow will exceed that of convection at the fluid/sphere boundary, even for a much ...
Thermal contact resistance is significant and may dominate for good heat conductors such as metals but can be neglected for poor heat conductors such as insulators. [2] Thermal contact conductance is an important factor in a variety of applications, largely because many physical systems contain a mechanical combination of
Interfacial thermal resistance is a measure of an interface's resistance to thermal flow. This thermal resistance differs from contact resistance, as it exists even at atomically perfect interfaces. Understanding the thermal resistance at the interface between two materials is of primary significance in the study of its thermal properties.