Search results
Results From The WOW.Com Content Network
Proof by contradiction is similar ... This gives a contradiction, since no prime number divides 1. ... The classic proof that the square root of 2 is irrational is a ...
Written in 1873, this proof uses the characterization of as the smallest positive number whose half is a zero of the cosine function and it actually proves that is irrational. [3] [4] As in many proofs of irrationality, it is a proof by contradiction.
In mathematics, a proof by infinite descent, also known as Fermat's method of descent, is a particular kind of proof by contradiction [1] used to show that a statement cannot possibly hold for any number, by showing that if the statement were to hold for a number, then the same would be true for a smaller number, leading to an infinite descent and ultimately a contradiction. [2]
Here is a proof by contradiction that log 2 3 is irrational ... Dov Jarden gave a simple non-constructive proof that there exist two irrational numbers a and b, ...
In 1840, Liouville published a proof of the fact that e 2 is irrational [10] followed by a proof that e 2 is not a root of a second-degree polynomial with rational coefficients. [11] This last fact implies that e 4 is irrational. His proofs are similar to Fourier's proof of the irrationality of e.
One proof of the number's irrationality is the following proof by infinite descent. It is also a proof of a negation by refutation : it proves the statement " 2 {\displaystyle {\sqrt {2}}} is not rational" by assuming that it is rational and then deriving a falsehood.
The following 1953 proof by Dov Jarden has been widely used as an example of a non-constructive proof since at least 1970: [4] [5] CURIOSA 339. A Simple Proof That a Power of an Irrational Number to an Irrational Exponent May Be Rational. is either rational or irrational. If it is rational, our statement is proved.
One of the widely used types of impossibility proof is proof by contradiction.In this type of proof, it is shown that if a proposition, such as a solution to a particular class of equations, is assumed to hold, then via deduction two mutually contradictory things can be shown to hold, such as a number being both even and odd or both negative and positive.