Search results
Results From The WOW.Com Content Network
Fenestrated capillaries have diaphragms that cover the pores whereas sinusoids lack a diaphragm and just have an open pore. These types of blood vessels allow red and white blood cells (7.5 μm – 25 μm diameter) and various serum proteins to pass, aided by a discontinuous basal lamina.
In microvasculature, this is controlled by the porosity of a capillary and whether it is continuous, fenestrated or sinusoidal. The reflection coefficient acts as a correction factor and is determined by the difference in particle size and pore ratio. It is thought of as the probability that the particle will travel into a pore within the ...
The glomerular basement membrane of the kidney is the basal lamina layer of the glomerulus.The glomerular endothelial cells, the glomerular basement membrane, and the filtration slits between the podocytes perform the filtration function of the glomerulus, separating the blood in the capillaries from the filtrate that forms in Bowman's capsule. [1]
Renal corpuscle showing glomerulus and glomerular capillaries Figure 2: (a) Diagram of the juxtaglomerular apparatus: it has specialized cells working as a unit which monitor the sodiujuxtaglomerular apparatus: it has three types of specm content of the fluid in the distal convoluted tubule (not labelled - it is the tubule on the left) and adjust the glomerular filtration rate and the rate of ...
Filtration barrier—The filtration barrier is composed of the fenestrated endothelium of the glomerular capillaries, the fused basal lamina of the endothelial cells and podocytes, and the filtration slits of the podocytes. The barrier permits the passage of water, ions, and small molecules from the bloodstream into the Bowman's space.
A fenestra (fenestration; pl.: fenestrae or fenestrations) is any small opening or pore, commonly used as a term in the biological sciences. [1] It is the Latin word for "window", and is used in various fields to describe a pore in an anatomical structure.
In intercellular clefts of capillaries, it has been calculated that the fractional area of the capillary wall occupied by the intercellular cleft is 20m/cm 2 x 20 nm (length x width)= 0.004 (0.4%). This is the fractional area of the capillary wall exposed for free diffusion of small hydrophilic solutes and fluids 5 .
Its main function is to quickly transport and exchange hormones between the hypothalamus arcuate nucleus and anterior pituitary gland. The capillaries in the portal system are fenestrated (have many small channels with high vascular permeability ) which allows a rapid exchange between the hypothalamus and the pituitary.