When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Pyruvic acid - Wikipedia

    en.wikipedia.org/wiki/Pyruvic_acid

    Jöns Jacob Berzelius characterized this other acid the following year and named pyruvic acid because it was distilled using heat. [5] [6] The correct molecular structure was deduced by the 1870s. [7] Pyruvic acid is a colorless liquid with a smell similar to that of acetic acid and is miscible with water. [8]

  3. Pyruvate dehydrogenase complex - Wikipedia

    en.wikipedia.org/wiki/Pyruvate_dehydrogenase_complex

    Acetyl-CoA may then be used in the citric acid cycle to carry out cellular respiration, and this complex links the glycolysis metabolic pathway to the citric acid cycle. Pyruvate decarboxylation is also known as the "pyruvate dehydrogenase reaction" because it also involves the oxidation of pyruvate. [2]

  4. Cellular respiration - Wikipedia

    en.wikipedia.org/wiki/Cellular_respiration

    Cellular respiration is the process of oxidizing biological fuels using an inorganic electron acceptor, such as oxygen, to drive production of adenosine triphosphate (ATP), which contains energy. Cellular respiration may be described as a set of metabolic reactions and processes that take place in the cells of organisms to convert chemical ...

  5. Pyruvate dehydrogenase - Wikipedia

    en.wikipedia.org/wiki/Pyruvate_dehydrogenase

    The conversion is crucial because acetyl-CoA may then be used in the citric acid cycle to carry out cellular respiration. [2] To distinguish between this enzyme and the PDC, it is systematically called pyruvate dehydrogenase (acetyl-transferring).

  6. Pyruvate decarboxylation - Wikipedia

    en.wikipedia.org/wiki/Pyruvate_decarboxylation

    Pyruvate dehydrogenase complex reaction. Pyruvate decarboxylation or pyruvate oxidation, also known as the link reaction (or oxidative decarboxylation of pyruvate [1]), is the conversion of pyruvate into acetyl-CoA by the enzyme complex pyruvate dehydrogenase complex.

  7. Glycolysis - Wikipedia

    en.wikipedia.org/wiki/Glycolysis

    d -Glucose + 2 [NAD] + + 2 [ADP] + 2 [P] i 2 × Pyruvate 2 × + 2 [NADH] + 2 H + + 2 [ATP] + 2 H 2 O Glycolysis pathway overview The use of symbols in this equation makes it appear unbalanced with respect to oxygen atoms, hydrogen atoms, and charges. Atom balance is maintained by the two phosphate (P i) groups: Each exists in the form of a hydrogen phosphate anion, dissociating to contribute ...

  8. Pyruvate decarboxylase - Wikipedia

    en.wikipedia.org/wiki/Pyruvate_decarboxylase

    This can react as a nucleophile at the ketone carbon of pyruvic acid. [3] During the decarboxylation of pyruvate, the TPP stabilizes the carbanion intermediates as an electrophile by noncovalent bonds. [4] Specifically, the pyridyl nitrogen N1' and the 4'-amino group of TPP are essential for the catalytic function of the enzyme-TPP complex. [5]

  9. Pasteur effect - Wikipedia

    en.wikipedia.org/wiki/Pasteur_effect

    If the concentration of oxygen increases, pyruvate is instead converted to acetyl CoA, used in the citric acid cycle, and undergoes oxidative phosphorylation. Per glucose, 10 NADH and 2 FADH 2 are produced in cellular respiration for a significant amount of proton pumping to produce a proton gradient utilized by ATP Synthase. While the exact ...