When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Glycolysis - Wikipedia

    en.wikipedia.org/wiki/Glycolysis

    d -Glucose + 2 [NAD] + + 2 [ADP] + 2 [P] i 2 × Pyruvate 2 × + 2 [NADH] + 2 H + + 2 [ATP] + 2 H 2 O Glycolysis pathway overview The use of symbols in this equation makes it appear unbalanced with respect to oxygen atoms, hydrogen atoms, and charges. Atom balance is maintained by the two phosphate (P i) groups: Each exists in the form of a hydrogen phosphate anion, dissociating to contribute ...

  3. Oxidative phosphorylation - Wikipedia

    en.wikipedia.org/wiki/Oxidative_phosphorylation

    Glycolysis produces only 2 ATP molecules, but somewhere between 30 and 36 ATPs are produced by the oxidative phosphorylation of the 10 NADH and 2 succinate molecules made by converting one molecule of glucose to carbon dioxide and water, [6] while each cycle of beta oxidation of a fatty acid yields about 14 ATPs. These ATP yields are ...

  4. P/O ratio - Wikipedia

    en.wikipedia.org/wiki/P/O_ratio

    The H+/2e − ratios of the three major respiratory complexes are generally agreed to be 4, 4, and 2 for Complexes I, III, and IV respectively. [7] The H + /O ratio thus depends whether the substrate electrons enter at the level of NADH (passing through all three for 10 H + /2e −) or ubiquinol (passing through only complexes III and IV for 6H ...

  5. Carbohydrate metabolism - Wikipedia

    en.wikipedia.org/wiki/Carbohydrate_metabolism

    Glucose-6-phosphate can then progress through glycolysis. [1] Glycolysis only requires the input of one molecule of ATP when the glucose originates in glycogen. [1] Alternatively, glucose-6-phosphate can be converted back into glucose in the liver and the kidneys, allowing it to raise blood glucose levels if necessary. [2]

  6. Cellular respiration - Wikipedia

    en.wikipedia.org/wiki/Cellular_respiration

    Including one H + for the transport reactions, this means that synthesis of one ATP requires 1 + 10/3 = 4.33 protons in yeast and 1 + 8/3 = 3.67 in vertebrates. This would imply that in human mitochondria the 10 protons from oxidizing NADH would produce 2.72 ATP (instead of 2.5) and the 6 protons from oxidizing succinate or ubiquinol would ...

  7. Metabolic pathway - Wikipedia

    en.wikipedia.org/wiki/Metabolic_pathway

    Glycolysis results in the breakdown of glucose, but several reactions in the glycolysis pathway are reversible and participate in the re-synthesis of glucose (gluconeogenesis). [9] Glycolysis was the first metabolic pathway discovered: As glucose enters a cell, it is immediately phosphorylated by ATP to glucose 6-phosphate in the irreversible ...

  8. Glucose uptake - Wikipedia

    en.wikipedia.org/wiki/Glucose_uptake

    Facilitated Diffusion - a passive process that relies on carrier proteins to transport glucose down a concentration gradient. [ 1 ] Secondary Active Transport - transport of a solute in the direction of increasing electrochemical potential via the facilitated diffusion of a second solute (usually an ion, in this case Na + ) in the direction of ...

  9. Pentose phosphate pathway - Wikipedia

    en.wikipedia.org/wiki/Pentose_phosphate_pathway

    While the pentose phosphate pathway does involve oxidation of glucose, its primary role is anabolic rather than catabolic. The pathway is especially important in red blood cells (erythrocytes). The reactions of the pathway were elucidated in the early 1950s by Bernard Horecker and co-workers. [2] [3] There are two distinct phases in the pathway.

  1. Related searches electrochemical oxidation process of glucose in the body requires one or three

    oxidative phosphorylation of glucoseoxidative oxidation process