Search results
Results From The WOW.Com Content Network
The strain can be decomposed into a recoverable elastic strain (ε e) and an inelastic strain (ε p). The stress at initial yield is σ 0 . Work hardening , also known as strain hardening , is the process by which a material's load-bearing capacity (strength) increases during plastic (permanent) deformation.
The strain hardening exponent (also called the strain hardening index), usually denoted , is a measured parameter that quantifies the ability of a material to become stronger due to strain hardening. Strain hardening (work hardening) is the process by which a material's load-bearing capacity increases during plastic (permanent) strain , or ...
The index n usually lies between the values of 2, for fully strain hardened materials, and 2.5, for fully annealed materials. It is roughly related to the strain hardening coefficient in the equation for the true stress-true strain curve by adding 2. [1] Note, however, that below approximately d = 0.5 mm (0.020 in) the value of n can surpass 3.
The Ramberg–Osgood equation was created to describe the nonlinear relationship between stress and strain—that is, the stress–strain curve—in materials near their yield points. It is especially applicable to metals that harden with plastic deformation (see work hardening ), showing a smooth elastic-plastic transition.
At this point, the strengthening mechanism changes from dislocation-dominated strain hardening to growth softening and grain rotation. Typically, the inverse Hall-Petch effect will happens at grain size ranging from 10 nm to 30 nm and makes it hard for nanocrystalline materials to achieve a high strength.
This phenomenon is known as Strain/Work hardening. [18] For a viscoplastic material the hardening curves are not significantly different from those of rate-independent plastic material. Nevertheless, three essential differences can be observed. At the same strain, the higher the rate of strain the higher the stress
The general equation for power law creep is as follows, [17] where is a dimensionless constant relating shear strain rate and stress, μ is the shear modulus, b is the Burger's vector, k is the Boltzmann constant, T is the temperature, n is the stress exponent, is the applied shear stress, and is the effective diffusion constant.
The strain can be decomposed into a recoverable elastic strain and an inelastic strain (). The stress at initial yield is σ 0 {\displaystyle \sigma _{0}} . For strain hardening materials (as shown in the figure) the yield stress increases with increasing plastic deformation to a value of σ y {\displaystyle \sigma _{y}} .