When.com Web Search

  1. Ads

    related to: pulsed ultrasound vs. continuous

Search results

  1. Results From The WOW.Com Content Network
  2. Low-intensity pulsed ultrasound - Wikipedia

    en.wikipedia.org/.../Low-intensity_pulsed_ultrasound

    Low-intensity pulsed ultrasound (LIPUS) is a technology that can be used for therapeutic purposes. It exploits low intensity and pulsed mechanical waves in order to induce regenerative and anti-inflammatory effects on biological tissues, such as bone, [ 1 ] cartilage, and tendon. [ 2 ]

  3. Doppler ultrasonography - Wikipedia

    en.wikipedia.org/wiki/Doppler_ultrasonography

    The disadvantage of pulsed Doppler is that the measurements can suffer from aliasing. The terms Doppler ultrasound and Doppler sonography have been accepted to apply to both pulsed and continuous Doppler systems, despite the different mechanisms by which the velocity is measured. [citation needed] There are no standards for displaying color ...

  4. Echocardiography - Wikipedia

    en.wikipedia.org/wiki/Echocardiography

    Not only can an echocardiogram create ultrasound images of heart structures, but it can also produce accurate assessment of the blood flowing through the heart by Doppler echocardiography, using pulsed- or continuous-wave Doppler ultrasound. This allows assessment of both normal and abnormal blood flow through the heart.

  5. Home ultrasound - Wikipedia

    en.wikipedia.org/wiki/Home_ultrasound

    This method of medical ultrasound therapy can be used for various types of pain relief and physical therapy. In physics, the term "ultrasound" [1] applies to all acoustic energy with a frequency above the audible range of human hearing. The audible range of sound is 20 hertz – 20 kilohertz. Ultrasound frequency is greater than 20 kilohertz.

  6. Medical ultrasound - Wikipedia

    en.wikipedia.org/wiki/Medical_ultrasound

    Medical ultrasound includes diagnostic techniques (mainly imaging techniques) using ultrasound, as well as therapeutic applications of ultrasound. In diagnosis, it is used to create an image of internal body structures such as tendons, muscles, joints, blood vessels, and internal organs, to measure some characteristics (e.g., distances and velocities) or to generate an informative audible sound.

  7. Therapeutic ultrasound - Wikipedia

    en.wikipedia.org/wiki/Therapeutic_ultrasound

    Ultrasound can ablate tumors or other tissue non-invasively. [4] This is accomplished using a technique known as high intensity focused ultrasound (HIFU), also called focused ultrasound surgery. This procedure uses generally lower frequencies than medical diagnostic ultrasound (250–2000 kHz), but significantly higher time-averaged intensities.