When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Ones' complement - Wikipedia

    en.wikipedia.org/wiki/Ones'_complement

    The ones' complement of a binary number is the value obtained by inverting (flipping) all the bits in the binary representation of the number. The name "ones' complement" [1] refers to the fact that such an inverted value, if added to the original, would always produce an "all ones" number (the term "complement" refers to such pairs of mutually additive inverse numbers, here in respect to a ...

  3. Signed number representations - Wikipedia

    en.wikipedia.org/wiki/Signed_number_representations

    Therefore, ones' complement and two's complement representations of the same negative value will differ by one. Note that the ones' complement representation of a negative number can be obtained from the sign–magnitude representation merely by bitwise complementing the magnitude (inverting all the bits after the first). For example, the ...

  4. Sign extension - Wikipedia

    en.wikipedia.org/wiki/Sign_extension

    If ten bits are used to represent the value "11 1111 0001" (decimal negative 15) using two's complement, and this is sign extended to 16 bits, the new representation is "1111 1111 1111 0001". Thus, by padding the left side with ones, the negative sign and the value of the original number are maintained.

  5. Bit numbering - Wikipedia

    en.wikipedia.org/wiki/Bit_numbering

    Least significant bit first means that the least significant bit will arrive first: hence e.g. the same hexadecimal number 0x12, again 00010010 in binary representation, will arrive as the (reversed) sequence 0 1 0 0 1 0 0 0.

  6. Inverter (logic gate) - Wikipedia

    en.wikipedia.org/wiki/Inverter_(logic_gate)

    It is also called the complement gate [2] because it produces the ones' complement of a binary number, swapping 0s and 1s. The NOT gate is one of three basic logic gates from which any Boolean circuit may be built up. Together with the AND gate and the OR gate, any function in binary mathematics may be implemented.

  7. Method of complements - Wikipedia

    en.wikipedia.org/wiki/Method_of_complements

    The nines' complement of a decimal digit is the number that must be added to it to produce 9; the nines' complement of 3 is 6, the nines' complement of 7 is 2, and so on, see table. To form the nines' complement of a larger number, each digit is replaced by its nines' complement. Consider the following subtraction problem:

  8. Sign bit - Wikipedia

    en.wikipedia.org/wiki/Sign_bit

    Ones' complement is similar to Two's Complement, but the sign bit has the weight -(2 w-1 +1) where w is equal to the bits position in the number. [citation needed] With an 8-bit integer, the sign bit would have a value of -(2 8-1 +1), or -127. This allows for two types of zero: positive and negative, which is not possible with Two's complement.

  9. Internet checksum - Wikipedia

    en.wikipedia.org/wiki/Internet_checksum

    Note that these values are in hexadecimal notation. Initial addition: 4500 + 0073 + 0000 + 4000 + 4011 + c0a8 + 0001 + c0a8 + 00c7 = 2479c. Carry addition is then made by adding the fifth hexadecimal digit to the first 4 digits: 2 + 479c = 479e. The checksum is then the ones' complement (bitwise NOT) of this result: NOT 479e = b861