When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Carnot cycle - Wikipedia

    en.wikipedia.org/wiki/Carnot_cycle

    A Carnot heat-engine cycle described is a totally reversible cycle. That is, all the processes that compose it can be reversed, in which case it becomes the Carnot heat pump and refrigeration cycle. This time, the cycle remains exactly the same except that the directions of any heat and work interactions are reversed.

  3. Carnot heat engine - Wikipedia

    en.wikipedia.org/wiki/Carnot_heat_engine

    A Carnot heat engine [2] is a theoretical heat engine that operates on the Carnot cycle. The basic model for this engine was developed by Nicolas Léonard Sadi Carnot in 1824. The Carnot engine model was graphically expanded by Benoît Paul Émile Clapeyron in 1834 and mathematically explored by Rudolf Clausius in 1857, work that led to the ...

  4. Heat pump and refrigeration cycle - Wikipedia

    en.wikipedia.org/wiki/Heat_pump_and...

    The Carnot cycle, which has a quantum equivalent, [11] is reversible so the four processes that comprise it, two isothermal and two isentropic, can also be reversed. When a Carnot cycle runs in reverse, it is called a reverse Carnot cycle. A refrigerator or heat pump that acts according to the reversed Carnot cycle is called a Carnot ...

  5. Reversible process (thermodynamics) - Wikipedia

    en.wikipedia.org/wiki/Reversible_process...

    Reversible processes define the boundaries of how efficient heat engines can be in thermodynamics and engineering: a reversible process is one where the machine has maximum efficiency (see Carnot cycle). Reversible adiabatic process: The state on the left can be reached from the state on the right as well as vice versa without exchanging heat ...

  6. Nicolas Léonard Sadi Carnot - Wikipedia

    en.wikipedia.org/wiki/Nicolas_Léonard_Sadi_Carnot

    Because Carnot's cycle is reversible, it can also be used as a refrigerator: if an external agent supplies the needed mechanical work to move the piston, the sequence of transformations of the gas will absorb heat from the colder reservoir and reject it into the hotter reservoir. Carnot argued that no engine operating between reservoirs at two ...

  7. Thermodynamic cycle - Wikipedia

    en.wikipedia.org/wiki/Thermodynamic_cycle

    The Carnot cycle is a cycle composed of the totally reversible processes of isentropic compression and expansion and isothermal heat addition and rejection. The thermal efficiency of a Carnot cycle depends only on the absolute temperatures of the two reservoirs in which heat transfer takes place, and for a power cycle is:

  8. Carnot's theorem (thermodynamics) - Wikipedia

    en.wikipedia.org/wiki/Carnot's_theorem...

    Since a Carnot heat engine is a reversible heat engine, and all reversible heat engines operate with the same efficiency between the same reservoirs, we have the first part of Carnot's theorem: No irreversible heat engine is more efficient than a Carnot heat engine operating between the same two thermal reservoirs.

  9. Second law of thermodynamics - Wikipedia

    en.wikipedia.org/wiki/Second_law_of_thermodynamics

    In modern terms, Carnot's principle may be stated more precisely: The efficiency of a quasi-static or reversible Carnot cycle depends only on the temperatures of the two heat reservoirs, and is the same, whatever the working substance. A Carnot engine operated in this way is the most efficient possible heat engine using those two temperatures.