Search results
Results From The WOW.Com Content Network
for all values of x in the domain. A nonzero constant P for which this is the case is called a period of the function. If there exists a least positive [2] constant P with this property, it is called the fundamental period (also primitive period, basic period, or prime period.) Often, "the" period of a function is used to mean its fundamental ...
Lagrange proved the converse of Euler's theorem: if x is a quadratic irrational, then the regular continued fraction expansion of x is periodic. [4] Given a quadratic irrational x one can construct m different quadratic equations, each with the same discriminant, that relate the successive complete quotients of the regular continued fraction ...
The fractional Schrödinger equation, a fundamental equation of fractional quantum mechanics, has the following form: [69] [70] (,) = (,) + (,) (,). where the solution of the equation is the wavefunction ψ ( r , t ) – the quantum mechanical probability amplitude for the particle to have a given position vector r at any given time t , and ħ ...
Graph of the fractional part of real numbers. The fractional part or decimal part [1] of a non‐negative real number is the excess beyond that number's integer part. The latter is defined as the largest integer not greater than x, called floor of x or ⌊ ⌋. Then, the fractional part can be formulated as a difference:
In mathematics, specifically algebraic geometry, a period or algebraic period [1] is a complex number that can be expressed as an integral of an algebraic function over an algebraic domain. The periods are a class of numbers which includes, alongside the algebraic numbers, many well known mathematical constants such as the number π .
The rate of convergence depends on the absolute value of the ratio between the two roots: the farther that ratio is from unity, the more quickly the continued fraction converges. When the monic quadratic equation with real coefficients is of the form x 2 = c, the general solution described above is useless because division by zero is not well ...
Conversely the period of the repeating decimal of a fraction c / d will be (at most) the smallest number n such that 10 n − 1 is divisible by d. For example, the fraction 2 / 7 has d = 7, and the smallest k that makes 10 k − 1 divisible by 7 is k = 6, because 999999 = 7 × 142857. The period of the fraction 2 / 7 is ...
Ideal class groups (or, rather, what were effectively ideal class groups) were studied some time before the idea of an ideal was formulated. These groups appeared in the theory of quadratic forms: in the case of binary integral quadratic forms, as put into something like a final form by Carl Friedrich Gauss, a composition law was defined on certain equivalence classes of forms.