When.com Web Search

  1. Ad

    related to: how to simplify root fractions with exponents

Search results

  1. Results From The WOW.Com Content Network
  2. Nested radical - Wikipedia

    en.wikipedia.org/wiki/Nested_radical

    In the case of two nested square roots, the following theorem completely solves the problem of denesting. [2]If a and c are rational numbers and c is not the square of a rational number, there are two rational numbers x and y such that + = if and only if is the square of a rational number d.

  3. Algebraic operation - Wikipedia

    en.wikipedia.org/wiki/Algebraic_operation

    In mathematics, a basic algebraic operation is any one of the common operations of elementary algebra, which include addition, subtraction, multiplication, division, raising to a whole number power, and taking roots (fractional power). [1] These operations may be performed on numbers, in which case they are often called arithmetic operations.

  4. Exponentiation - Wikipedia

    en.wikipedia.org/wiki/Exponentiation

    This makes the principal n th root a continuous function in the whole complex plane, except for negative real values of the radicand. This function equals the usual n th root for positive real radicands. For negative real radicands, and odd exponents, the principal n th root is not real, although the usual n th root is real.

  5. Tetration - Wikipedia

    en.wikipedia.org/wiki/Tetration

    Analogously, the inverses of tetration are often called the super-root, and the super-logarithm (In fact, all hyperoperations greater than or equal to 3 have analogous inverses); e.g., in the function =, the two inverses are the cube super-root of y and the super-logarithm base y of x.

  6. Algebraic expression - Wikipedia

    en.wikipedia.org/wiki/Algebraic_expression

    In mathematics, an algebraic expression is an expression built up from constants (usually, algebraic numbers) variables, and the basic algebraic operations: addition (+), subtraction (-), multiplication (×), division (÷), whole number powers, and roots (fractional powers).

  7. nth root - Wikipedia

    en.wikipedia.org/wiki/Nth_root

    A root of degree 2 is called a square root and a root of degree 3, a cube root. Roots of higher degree are referred by using ordinal numbers, as in fourth root, twentieth root, etc. The computation of an n th root is a root extraction. For example, 3 is a square root of 9, since 3 2 = 9, and −3 is also a square root of 9, since (−3) 2 = 9.

  8. Rationalisation (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Rationalisation_(mathematics)

    In elementary algebra, root rationalisation (or rationalization) is a process by which radicals in the denominator of an algebraic fraction are eliminated.. If the denominator is a monomial in some radical, say , with k < n, rationalisation consists of multiplying the numerator and the denominator by , and replacing by x (this is allowed, as, by definition, a n th root of x is a number that ...

  9. Slide rule - Wikipedia

    en.wikipedia.org/wiki/Slide_rule

    This allowed the user to directly perform calculations involving roots and exponents. This was especially useful for fractional powers. In 1821, Nathaniel Bowditch , described in the American Practical Navigator a "sliding rule" that contained scaled trigonometric functions on the fixed part and a line of log-sines and log-tans on the slider ...