Search results
Results From The WOW.Com Content Network
A neuron receives signals from neighboring cells through branched, cellular extensions called dendrites.The neuron then propagates an electrical signal down a specialized axon extension from the basal pole to the synapse, where neurotransmitters are released to propagate the signal to another neuron or effector cell (e.g., muscle or gland).
When rod cells are in the dark, they are depolarized. In the rod cells, this depolarization is maintained by ion channels that remain open due to the higher voltage of the rod cell in the depolarized state. The ion channels allow calcium and sodium to pass freely into the cell, maintaining the depolarized state.
Polarized → Depolarized Rising: 0 mV ... with the negatively charged glutamic acid residues that line the ... there is a change in the cell's membrane ...
All cells in animal body tissues are electrically polarized – in other words, they maintain a voltage difference across the cell's plasma membrane, known as the membrane potential. This electrical polarization results from a complex interplay between protein structures embedded in the membrane called ion pumps and ion channels .
Cells with polarized plasma membranes must buffer and adequately distribute certain ions, such as sodium (Na +), potassium (K +), calcium (Ca 2+), and chloride (Cl −) to establish and maintain this polarity. Integral channel proteins such as the sodium-potassium pump actively maintain the electrochemical gradient through movement of sodium ...
Voltage-gated sodium channels (VGSCs), also known as voltage-dependent sodium channels (VDSCs), are a group of voltage-gated ion channels found in the membrane of excitable cells (e.g., muscle, glial cells, neurons, etc.) with a permeability to the sodium ion Na +. They are the main channels involved in action potential of excitable cells.
The system as a whole is electro-neutral. The uncompensated positive charges outside the cell, and the uncompensated negative charges inside the cell, physically line up on the membrane surface and attract each other across the lipid bilayer. Thus, the membrane potential is physically located only in the immediate vicinity of the membrane.
Once the cell is complete, a surface coil (or coils, depending on the desired coil type) is taped to the outside of the cell, which a) allows RF pulses to be produced in order to tip the polarized spins into the detection field (x,y plane) and b) detects the signal produced by the polarized nuclear spins. The cell is placed in an oven which ...