Search results
Results From The WOW.Com Content Network
In physics, charge conservation is the principle, of experimental nature, that the total electric charge in an isolated system never changes. [1] The net quantity of electric charge, the amount of positive charge minus the amount of negative charge in the universe, is always conserved .
In physics a conserved current is a current, , that satisfies the continuity equation =.The continuity equation represents a conservation law, hence the name. Indeed, integrating the continuity equation over a volume , large enough to have no net currents through its surface, leads to the conservation law =, where = is the conserved quantity.
The Nernst–Planck equation is a conservation of mass equation used to describe the motion of a charged chemical species in a fluid medium. It extends Fick's law of diffusion for the case where the diffusing particles are also moved with respect to the fluid by electrostatic forces.
In physics, a conservation law states that a particular measurable property of an isolated physical system does not change as the system evolves over time. Exact conservation laws include conservation of mass-energy, conservation of linear momentum, conservation of angular momentum, and conservation of electric charge.
The law of conservation of charge always applies, giving the object from which a negative charge is taken a positive charge of the same magnitude, and vice versa. Even when an object's net charge is zero, the charge can be distributed non-uniformly in the object (e.g., due to an external electromagnetic field, or bound polar
Kirchhoff's circuit laws were originally obtained from experimental results. However, the current law can be viewed as an extension of the conservation of charge, since charge is the product of current and the time the current has been flowing. If the net charge in a region is constant, the current law will hold on the boundaries of the region.
where: is the rate of change of the energy density in the volume. ∇•S is the energy flow out of the volume, given by the divergence of the Poynting vector S. J•E is the rate at which the fields do work on charges in the volume (J is the current density corresponding to the motion of charge, E is the electric field, and • is the dot product).
What links here; Related changes; Upload file; Special pages; Permanent link; Page information; Cite this page; Get shortened URL; Download QR code