When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Chemotroph - Wikipedia

    en.wikipedia.org/wiki/Chemotroph

    These molecules can be organic (chemoorganotrophs) or inorganic (chemolithotrophs). The chemotroph designation is in contrast to phototrophs, which use photons. Chemotrophs can be either autotrophic or heterotrophic. Chemotrophs can be found in areas where electron donors are present in high concentration, for instance around hydrothermal vents.

  3. Methanogen - Wikipedia

    en.wikipedia.org/wiki/Methanogen

    Subsurface and surface genomes varied along with the constraints found in individual depth zones, though fine-scale diversity was also found in this study. [34] Genomic markers pointing at environmentally relevant factors are often non-exclusive. A survey of Methanogenic Thermoplasmata has found these organisms in human and animal intestinal ...

  4. Lithoautotroph - Wikipedia

    en.wikipedia.org/wiki/Lithoautotroph

    A lithoautotroph is an organism that derives energy from reactions of reduced compounds of mineral (inorganic) origin. [1] Two types of lithoautotrophs are distinguished by their energy source; photolithoautotrophs derive their energy from light, while chemolithoautotrophs (chemolithotrophs or chemoautotrophs) derive their energy from chemical reactions. [1]

  5. Primary nutritional groups - Wikipedia

    en.wikipedia.org/wiki/Primary_nutritional_groups

    Organotrophs use organic compounds as electron/hydrogen donors. Lithotrophs use inorganic compounds as electron/hydrogen donors.. The electrons or hydrogen atoms from reducing equivalents (electron donors) are needed by both phototrophs and chemotrophs in reduction-oxidation reactions that transfer energy in the anabolic processes of ATP synthesis (in heterotrophs) or biosynthesis (in autotrophs).

  6. List of human cell types - Wikipedia

    en.wikipedia.org/wiki/List_of_human_cell_types

    The Human Cell Atlas project, which started in 2016, had as one of its goals to "catalog all cell types (for example, immune cells or brain cells) and sub-types in the human body". [13] By 2018, the Human Cell Atlas description based the project on the assumption that "our characterization of the hundreds of types and subtypes of cells in the ...

  7. Autotroph - Wikipedia

    en.wikipedia.org/wiki/Autotroph

    An autotroph is an organism that can convert abiotic sources of energy into energy stored in organic compounds, which can be used by other organisms. Autotrophs produce complex organic compounds (such as carbohydrates , fats , and proteins ) using carbon from simple substances such as carbon dioxide, [ 1 ] generally using energy from light or ...

  8. Cells all over the body store 'memories': What does this mean ...

    www.aol.com/cells-over-body-store-memories...

    A New York University study has found that kidney and nerve tissue cells can form memories much like brain cells. ... like brain cells, other cells in the human body also accumulate memories.

  9. Carbon source (biology) - Wikipedia

    en.wikipedia.org/wiki/Carbon_source_(biology)

    An autotroph is an organism that can convert abiotic sources of energy into energy stored in organic compounds, which can be used by other organisms.Autotrophs produce complex organic compounds (such as carbohydrates, fats, and proteins) using carbon from simple substances such as carbon dioxide, [1] generally using energy from light or inorganic chemical reactions. [2]