When.com Web Search

  1. Ads

    related to: vector fields software download

Search results

  1. Results From The WOW.Com Content Network
  2. Vector field - Wikipedia

    en.wikipedia.org/wiki/Vector_field

    A vector field V defined on an open set S is called a gradient field or a conservative field if there exists a real-valued function (a scalar field) f on S such that = = (,,, …,). The associated flow is called the gradient flow , and is used in the method of gradient descent .

  3. Vector field reconstruction - Wikipedia

    en.wikipedia.org/wiki/Vector_field_reconstruction

    Vector field reconstruction [1] is a method of creating a vector field from experimental or computer-generated data, usually with the goal of finding a differential equation model of the system. Definition

  4. Line integral convolution - Wikipedia

    en.wikipedia.org/wiki/Line_integral_convolution

    Compared to other integration-based techniques that compute field lines of the input vector field, LIC has the advantage that all structural features of the vector field are displayed, without the need to adapt the start and end points of field lines to the specific vector field. In other words, it shows the topology of the vector field.

  5. Vector calculus identities - Wikipedia

    en.wikipedia.org/wiki/Vector_calculus_identities

    For a tensor field of order k > 1, the tensor field of order k is defined by the recursive relation = where is an arbitrary constant vector. A tensor field of order greater than one may be decomposed into a sum of outer products, and then the following identity may be used: = ().

  6. Conservative vector field - Wikipedia

    en.wikipedia.org/wiki/Conservative_vector_field

    In vector calculus, a conservative vector field is a vector field that is the gradient of some function. [1] A conservative vector field has the property that its line integral is path independent; the choice of path between two points does not change the value of the line integral. Path independence of the line integral is equivalent to the ...

  7. Sources and sinks - Wikipedia

    en.wikipedia.org/wiki/Sources_and_sinks

    Three examples of vector fields. From left to right: a field with a source, a field with a sink, a field without either. In the physical sciences, engineering and mathematics, sources and sinks is an analogy used to describe properties of vector fields.

  8. Polyvector field - Wikipedia

    en.wikipedia.org/wiki/Polyvector_field

    A (,)-tensor field is a differential -form, a (,)-tensor field is a vector field, and a (,)-tensor field is -vector field. While differential forms are widely studied as such in differential geometry and differential topology , multivector fields are often encountered as tensor fields of type ( 0 , k ) {\displaystyle (0,k)} , except in the ...

  9. Fundamental vector field - Wikipedia

    en.wikipedia.org/wiki/Fundamental_vector_field

    In the study of mathematics, and especially of differential geometry, fundamental vector fields are instruments that describe the infinitesimal behaviour of a smooth Lie group action on a smooth manifold. Such vector fields find important applications in the study of Lie theory, symplectic geometry, and the study of Hamiltonian group actions.