Search results
Results From The WOW.Com Content Network
Half-line (geometry) or ray, half of a line split at an initial point Directed half-line or ray, half of a directed or oriented line split at an initial point; Ray (graph theory), an infinite sequence of vertices such that each vertex appears at most once in the sequence and each two consecutive vertices in the sequence are the two endpoints of an edge in the graph
In Euclidean geometry two rays with a common endpoint form an angle. [14] The definition of a ray depends upon the notion of betweenness for points on a line. It follows that rays exist only for geometries for which this notion exists, typically Euclidean geometry or affine geometry over an ordered field.
A meridional ray is a ray that passes through the axis of an optical fiber. A skew ray is a ray that travels in a non-planar zig-zag path and never crosses the axis of an optical fiber. A guided ray, bound ray, or trapped ray is a ray in a multi-mode optical fiber, which is confined by the core.
Geometrical optics, or ray optics, is a model of optics that describes light propagation in terms of rays. The ray in geometrical optics is an abstraction useful for approximating the paths along which light propagates under certain circumstances. The simplifying assumptions of geometrical optics include that light rays:
The angle of incidence, in geometric optics, is the angle between a ray incident on a surface and the line perpendicular (at 90 degree angle) to the surface at the point of incidence, called the normal. The ray can be formed by any waves, such as optical, acoustic, microwave, and X-ray. In the figure below, the line representing a ray makes an ...
In differential geometry, a caustic is the envelope of rays either reflected or refracted by a manifold. It is related to the concept of caustics in geometric optics. The ray's source may be a point (called the radiant) or parallel rays from a point at infinity, in which case a direction vector of the rays must be specified.
Denote by h′ a ray of the straight line a′ emanating from a point O′ of this line. Then in the plane α′ there is one and only one ray k′ such that the angle ∠ (h, k), or ∠ (k, h), is congruent to the angle ∠ (h′, k′) and at the same time all interior points of the angle ∠ (h′, k′) lie upon the given side of a′.
Accordingly, all rays crossing axis x 1 at coordinate x A contained between rays r A and r B are represented by a vertical line connecting points r A and r B in phase space. In general, all rays crossing axis x 1 between x L and x R are represented by a volume R in phase space. The rays at the boundary ∂R of volume R are called edge rays.