Search results
Results From The WOW.Com Content Network
The Dictionary of Protein Secondary Structure, in short DSSP, is commonly used to describe the protein secondary structure with single letter codes. The secondary structure is assigned based on hydrogen bonding patterns as those initially proposed by Pauling et al. in 1951 (before any protein structure had ever been experimentally determined ...
The DSSP algorithm is the standard method for assigning secondary structure to the amino acids of a protein, given the atomic-resolution coordinates of the protein. The abbreviation is only mentioned once in the 1983 paper describing this algorithm, [2] where it is the name of the Pascal program that implements the algorithm Define Secondary Structure of Proteins.
The secondary structure of a β-sheet can be described roughly by giving the number of strands, their topology, and whether their hydrogen bonds are parallel or antiparallel. β-sheets can be open , meaning that they have two edge strands (as in the flavodoxin fold or the immunoglobulin fold ) or they can be closed β-barrels (such as the TIM ...
The alpha helix is also commonly called a: Pauling–Corey–Branson α-helix (from the names of three scientists who described its structure); 3.6 13-helix because there are 3.6 amino acids in one ring, with 13 atoms being involved in the ring formed by the hydrogen bond (starting with amidic hydrogen and ending with carbonyl oxygen)
A protein is a polyamide. Secondary structure: regularly repeating local structures stabilized by hydrogen bonds. The most common examples are the α-helix, β-sheet and turns. Because secondary structures are local, many regions of distinct secondary structure can be present in the same protein molecule.
A hairpin is a special case of a turn, in which the direction of the protein backbone reverses and the flanking secondary structure elements interact. For example, a beta hairpin connects two hydrogen-bonded , antiparallel β-strands (a rather confusing name, since a β-hairpin may contain many types of turns – α, β, γ, etc.).
Secondary structure refers to highly regular local sub-structures on the actual polypeptide backbone chain. Two main types of secondary structure, the α-helix and the β-strand or β-sheets, were suggested in 1951 by Linus Pauling. [5] These secondary structures are defined by patterns of hydrogen bonds between the
A pi helix (or π-helix) is a type of secondary structure found in proteins. Discovered by crystallographer Barbara Low in 1952 [1] and once thought to be rare, short π-helices are found in 15% of known protein structures and are believed to be an evolutionary adaptation derived by the insertion of a single amino acid into an α-helix. [2]