When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Hyperboloid - Wikipedia

    en.wikipedia.org/wiki/Hyperboloid

    In geometry, a hyperboloid of revolution, sometimes called a circular hyperboloid, is the surface generated by rotating a hyperbola around one of its principal axes. A hyperboloid is the surface obtained from a hyperboloid of revolution by deforming it by means of directional scalings, or more generally, of an affine transformation.

  3. Differential geometry of surfaces - Wikipedia

    en.wikipedia.org/wiki/Differential_geometry_of...

    A hyperboloid of two sheets A torus A helicoid. Simple examples. A simple example of a regular surface is given by the 2-sphere {(x, y, z) | x 2 + y 2 + z 2 = 1}; this surface can be covered by six Monge patches (two of each of the three types given above), taking h(u, v) = ± (1 − u 2 − v 2) 1/2.

  4. Ruled surface - Wikipedia

    en.wikipedia.org/wiki/Ruled_surface

    For example, a cone is formed by keeping one point of a line fixed whilst moving another point along a circle. A surface is doubly ruled if through every one of its points there are two distinct lines that lie on the surface. The hyperbolic paraboloid and the hyperboloid of one sheet are doubly ruled surfaces.

  5. Confocal conic sections - Wikipedia

    en.wikipedia.org/wiki/Confocal_conic_sections

    As approaches from above, the limit hyperboloid of one sheet is infinitely flat, or more precisely is the area of the x-y-plane consisting of the same ellipse and its doubly covered exterior (in the diagram: bottom, on the left, blue).

  6. Hyperboloid model - Wikipedia

    en.wikipedia.org/wiki/Hyperboloid_model

    In geometry, the hyperboloid model, also known as the Minkowski model after Hermann Minkowski, is a model of n-dimensional hyperbolic geometry in which points are represented by points on the forward sheet S + of a two-sheeted hyperboloid in (n+1)-dimensional Minkowski space or by the displacement vectors from the origin to those points, and m ...

  7. Hyperboloid structure - Wikipedia

    en.wikipedia.org/wiki/Hyperboloid_structure

    Hyperboloid structures are architectural structures designed using a hyperboloid in one sheet. Often these are tall structures, such as towers, where the hyperboloid geometry's structural strength is used to support an object high above the ground. Hyperboloid geometry is often used for decorative effect as well as structural economy.

  8. Hyperbolic geometry - Wikipedia

    en.wikipedia.org/wiki/Hyperbolic_geometry

    One can take the hyperboloid to represent the events (positions in spacetime) that various inertially moving observers, starting from a common event, will reach in a fixed proper time. The hyperbolic distance between two points on the hyperboloid can then be identified with the relative rapidity between the two corresponding observers.

  9. List of hyperboloid structures - Wikipedia

    en.wikipedia.org/wiki/List_of_hyperboloid_structures

    This page is a list of hyperboloid structures. These were first applied in architecture by Russian engineer Vladimir Shukhov (1853–1939). Shukhov built his first example as a water tower ( hyperbolic shell ) for the 1896 All-Russian Exposition .