Search results
Results From The WOW.Com Content Network
The choosability (or list colorability or list chromatic number) ch(G) of a graph G is the least number k such that G is k-choosable. More generally, for a function f assigning a positive integer f(v) to each vertex v, a graph G is f-choosable (or f-list-colorable) if it has a list coloring no matter how one assigns a list of f(v) colors to ...
The smallest number of colors needed for an edge coloring of a graph G is the chromatic index, or edge chromatic number, χ ′ (G). A Tait coloring is a 3-edge coloring of a cubic graph . The four color theorem is equivalent to the assertion that every planar cubic bridgeless graph admits a Tait coloring.
A planar graph cannot contain K 3,3 as a minor; an outerplanar graph cannot contain K 3,2 as a minor (These are not sufficient conditions for planarity and outerplanarity, but necessary). Conversely, every nonplanar graph contains either K 3,3 or the complete graph K 5 as a minor; this is Wagner's theorem. [9] Every complete bipartite graph.
All non-isomorphic graphs on 3 vertices and their chromatic polynomials, clockwise from the top. The independent 3-set: k 3. An edge and a single vertex: k 2 (k – 1). The 3-path: k(k – 1) 2. The 3-clique: k(k – 1)(k – 2). The chromatic polynomial is a graph polynomial studied in algebraic graph theory, a branch of mathematics.
The degree of a graph also appears in upper bounds for other types of coloring; for edge coloring, the result that the chromatic index is at most Δ + 1 is Vizing's theorem. An extension of Brooks' theorem to total coloring, stating that the total chromatic number is at most Δ + 2, has been conjectured by Mehdi Behzad and Vizing.
This assignment of lists, each with length k = 3, makes it so that no matter which colors are chosen from each list for the edge's color, the graph cannot be properly colored. The graph is therefore not 3-edge-choosable, and has a list chromatic index of at least 4 (in this case, it is 4).
The number of perfect matchings of the complete graph K n (with n even) is given by the double factorial (n – 1)!!. [12] The crossing numbers up to K 27 are known, with K 28 requiring either 7233 or 7234 crossings. Further values are collected by the Rectilinear Crossing Number project. [13] Rectilinear Crossing numbers for K n are
A graph is bipartite if and only if it is 2-colorable, (i.e. its chromatic number is less than or equal to 2). [3] A graph is bipartite if and only if every edge belongs to an odd number of bonds, minimal subsets of edges whose removal increases the number of components of the graph. [16]