Search results
Results From The WOW.Com Content Network
In SI units, a geopotential height difference of one meter implies the vertical transport of a parcel of one kilogram; adopting the standard gravity value (9.80665 m/s 2), it corresponds to a constant work or potential energy difference of 9.80665 joules.
Since g is negative, an increase in height will correspond to a decrease in pressure, which fits with the previously mentioned reasoning about the weight of a column of fluid. When density and gravity are approximately constant (that is, for relatively small changes in height), simply multiplying height difference, gravity, and density will ...
Ground potential rise is a concern in the design of electrical substations because the high potential may be a hazard to people or equipment. The change of voltage over distance (potential gradient) may be so high that a person could be injured due to the voltage developed between two feet, or between the ground on which the person is standing ...
In fluid mechanics, the pressure-gradient force is the force that results when there is a difference in pressure across a surface. In general, a pressure is a force per unit area across a surface. A difference in pressure across a surface then implies a difference in force, which can result in an acceleration according to Newton's second law of ...
The back trajectories were evaluated using the constant equivalent potential temperatures. [7] In the mesoscale, equivalent potential temperature is also a useful measure of the static stability of the unsaturated atmosphere. Under normal, stably stratified conditions, the potential temperature increases with height,
Dynamic height is a way of specifying the vertical position of a point above a vertical datum; it is an alternative for orthometric height or normal height. It can be computed by dividing the location's geopotential number by the normal gravity at 45 degree latitude and zero height, a constant value (9.806199203 m/s 2 ). [ 1 ]
In fluid dynamics, head is a concept that relates the energy in an incompressible fluid to the height of an equivalent static column of that fluid. From Bernoulli's principle, the total energy at a given point in a fluid is the kinetic energy associated with the speed of flow of the fluid, plus energy from static pressure in the fluid, plus energy from the height of the fluid relative to an ...
The increase per meter would be 4.4 J/kg; this rate corresponds to one half of the local gravity of 8.8 m/s 2. For an altitude of 100 km (radius is 6471 km): The energy is −30.8 MJ/kg: the potential energy is −61.6 MJ/kg, and the kinetic energy 30.8 MJ/kg. Compare with the potential energy at the surface, which is −62.6 MJ/kg.