Search results
Results From The WOW.Com Content Network
A 1999 study of the Stony Brook University Algorithm Repository showed that, out of 75 algorithmic problems related to the field of combinatorial algorithms and algorithm engineering, the knapsack problem was the 19th most popular and the third most needed after suffix trees and the bin packing problem.
The knapsack problem is one of the most studied problems in combinatorial optimization, with many real-life applications. For this reason, many special cases and generalizations have been examined. For this reason, many special cases and generalizations have been examined.
For the problem variant in which not every item must be assigned to a bin, there is a family of algorithms for solving the GAP by using a combinatorial translation of any algorithm for the knapsack problem into an approximation algorithm for the GAP. [3] Using any -approximation algorithm ALG for the knapsack problem, it is possible to ...
Another example is attempting to make 40 US cents without nickels (denomination 25, 10, 1) with similar result — the greedy chooses seven coins (25, 10, and 5 × 1), but the optimal is four (4 × 10). A coin system is called "canonical" if the greedy algorithm always solves its change-making problem optimally.
When the number of bins is restricted to 1 and each item is characterized by both a volume and a value, the problem of maximizing the value of items that can fit in the bin is known as the knapsack problem. A variant of bin packing that occurs in practice is when items can share space when packed into a bin.
For example, it is possible to pack 147 rectangles of size (137,95) in a rectangle of size (1600,1230). Packing different rectangles in a rectangle : The problem of packing multiple rectangles of varying widths and heights in an enclosing rectangle of minimum area (but with no boundaries on the enclosing rectangle's width or height) has an ...
A minimum spanning tree of a weighted planar graph.Finding a minimum spanning tree is a common problem involving combinatorial optimization. Combinatorial optimization is a subfield of mathematical optimization that consists of finding an optimal object from a finite set of objects, [1] where the set of feasible solutions is discrete or can be reduced to a discrete set.
For the one-dimensional case, the new patterns are introduced by solving an auxiliary optimization problem called the knapsack problem, using dual variable information from the linear program. The knapsack problem has well-known methods to solve it, such as branch and bound and dynamic programming. The Delayed Column Generation method can be ...