When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Dodecagon - Wikipedia

    en.wikipedia.org/wiki/Dodecagon

    A skew zig-zag dodecagon has vertices alternating between two parallel planes. A regular skew dodecagon is vertex-transitive with equal edge lengths. In 3-dimensions it will be a zig-zag skew dodecagon and can be seen in the vertices and side edges of a hexagonal antiprism with the same D 5d, [2 +,10] symmetry, order 20. The dodecagrammic ...

  3. Method of exhaustion - Wikipedia

    en.wikipedia.org/wiki/Method_of_exhaustion

    The area of an ellipse is proportional to a rectangle having sides equal to its major and minor axes; The volume of a sphere is 4 times that of a cone having a base of the same radius and height equal to this radius; The volume of a cylinder having a height equal to its diameter is 3/2 that of a sphere having the same diameter;

  4. Area density - Wikipedia

    en.wikipedia.org/wiki/Area_density

    The area density (also known as areal density, surface density, superficial density, areic density, mass thickness, column density, or density thickness) of a two-dimensional object is calculated as the mass per unit area. The SI derived unit is the "kilogram per square metre" (kg·m −2).

  5. Mass distribution - Wikipedia

    en.wikipedia.org/wiki/Mass_distribution

    A mass distribution can be modeled as a measure. This allows point masses, line masses, surface masses, as well as masses given by a volume density function. Alternatively the latter can be generalized to a distribution. For example, a point mass is represented by a delta function defined in 3-dimensional space.

  6. List of centroids - Wikipedia

    en.wikipedia.org/wiki/List_of_centroids

    The following is a list of centroids of various two-dimensional and three-dimensional objects. The centroid of an object in -dimensional space is the intersection of all hyperplanes that divide into two parts of equal moment about the hyperplane.

  7. Regular dodecahedron - Wikipedia

    en.wikipedia.org/wiki/Regular_dodecahedron

    If the edge length of a regular dodecahedron is , the radius of a circumscribed sphere (one that touches the regular dodecahedron at all vertices), the radius of an inscribed sphere (tangent to each of the regular dodecahedron's faces), and the midradius (one that touches the middle of each edge) are: [21] =, =, =. Given a regular dodecahedron ...

  8. Rhombic dodecahedron - Wikipedia

    en.wikipedia.org/wiki/Rhombic_dodecahedron

    The surface area A and the volume V of the rhombic dodecahedron with edge length a are: [4] =, =. The rhombic dodecahedron can be viewed as the convex hull of the union of the vertices of a cube and an octahedron where the edges intersect perpendicularly.

  9. Surface-area-to-volume ratio - Wikipedia

    en.wikipedia.org/wiki/Surface-area-to-volume_ratio

    The surface-area-to-volume ratio has physical dimension inverse length (L −1) and is therefore expressed in units of inverse metre (m −1) or its prefixed unit multiples and submultiples. As an example, a cube with sides of length 1 cm will have a surface area of 6 cm 2 and a volume of 1 cm 3. The surface to volume ratio for this cube is thus