Search results
Results From The WOW.Com Content Network
Disc integration, also known in integral calculus as the disc method, is a method for calculating the volume of a solid of revolution of a solid-state material when integrating along an axis "parallel" to the axis of revolution. This method models the resulting three-dimensional shape as a stack of an infinite number of discs of varying radius ...
For example, the solution to the Dirichlet problem for the unit disk in R 2 is given by the Poisson integral formula. If f {\displaystyle f} is a continuous function on the boundary ∂ D {\displaystyle \partial D} of the open unit disk D {\displaystyle D} , then the solution to the Dirichlet problem is u ( z ) {\displaystyle u(z)} given by
In geometry, a disk (also spelled disc) [1] is the region in a plane bounded by a circle. A disk is said to be closed if it contains the circle that constitutes its boundary, and open if it does not. [2] For a radius, , an open disk is usually denoted as and a closed disk is ¯.
In mathematics, and specifically in potential theory, the Poisson kernel is an integral kernel, used for solving the two-dimensional Laplace equation, given Dirichlet boundary conditions on the unit disk. The kernel can be understood as the derivative of the Green's function for the Laplace equation. It is named for Siméon Poisson.
It is an arbitrary closed surface S = ∂V (the boundary of a 3-dimensional region V) used in conjunction with Gauss's law for the corresponding field (Gauss's law, Gauss's law for magnetism, or Gauss's law for gravity) by performing a surface integral, in order to calculate the total amount of the source quantity enclosed; e.g., amount of ...
Just as the definite integral of a positive function of one variable represents the area of the region between the graph of the function and the x-axis, the double integral of a positive function of two variables represents the volume of the region between the surface defined by the function (on the three-dimensional Cartesian plane where z = f(x, y)) and the plane which contains its domain. [1]
The test functions used to evaluate the algorithms for MOP were taken from Deb, [4] Binh et al. [5] and Binh. [6] The software developed by Deb can be downloaded, [ 7 ] which implements the NSGA-II procedure with GAs, or the program posted on Internet, [ 8 ] which implements the NSGA-II procedure with ES.
NumPy, a BSD-licensed library that adds support for the manipulation of large, multi-dimensional arrays and matrices; it also includes a large collection of high-level mathematical functions. NumPy serves as the backbone for a number of other numerical libraries, notably SciPy. De facto standard for matrix/tensor operations in Python.