When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. List of axioms - Wikipedia

    en.wikipedia.org/wiki/List_of_axioms

    Together with the axiom of choice (see below), these are the de facto standard axioms for contemporary mathematics or set theory. They can be easily adapted to analogous theories, such as mereology. Axiom of extensionality; Axiom of empty set; Axiom of pairing; Axiom of union; Axiom of infinity; Axiom schema of replacement; Axiom of power set ...

  3. Axiom schema of specification - Wikipedia

    en.wikipedia.org/wiki/Axiom_schema_of_specification

    In many popular versions of axiomatic set theory, the axiom schema of specification, [1] also known as the axiom schema of separation (Aussonderungsaxiom), [2] subset axiom [3], axiom of class construction, [4] or axiom schema of restricted comprehension is an axiom schema. Essentially, it says that any definable subclass of a set is a set.

  4. Zermelo–Fraenkel set theory - Wikipedia

    en.wikipedia.org/wiki/Zermelo–Fraenkel_set_theory

    The following particular axiom set is from Kunen (1980). The axioms in order below are expressed in a mixture of first order logic and high-level abbreviations. Axioms 1–8 form ZF, while the axiom 9 turns ZF into ZFC. Following Kunen (1980), we use the equivalent well-ordering theorem in place of the axiom of choice for axiom 9.

  5. Set theory - Wikipedia

    en.wikipedia.org/wiki/Set_theory

    Set theory is also a promising foundational system for much of mathematics. Since the publication of the first volume of Principia Mathematica, it has been claimed that most (or even all) mathematical theorems can be derived using an aptly designed set of axioms for set theory, augmented with many definitions, using first or second-order logic.

  6. Glossary of set theory - Wikipedia

    en.wikipedia.org/wiki/Glossary_of_set_theory

    2. Zermelo−Fraenkel set theory is the standard system of axioms for set theory 3. Zermelo set theory is similar to the usual Zermelo-Fraenkel set theory, but without the axioms of replacement and foundation 4. Zermelo's well-ordering theorem states that every set can be well ordered ZF Zermelo−Fraenkel set theory without the axiom of choice ZFA

  7. Zermelo set theory - Wikipedia

    en.wikipedia.org/wiki/Zermelo_set_theory

    The axioms of Zermelo set theory are stated for objects, some of which (but not necessarily all) are sets, and the remaining objects are urelements and not sets. Zermelo's language implicitly includes a membership relation ∈, an equality relation = (if it is not included in the underlying logic), and a unary predicate saying whether an object is a set.

  8. Axiom of constructibility - Wikipedia

    en.wikipedia.org/wiki/Axiom_of_constructibility

    The axiom of constructibility implies the axiom of choice (AC), given Zermelo–Fraenkel set theory without the axiom of choice (ZF). It also settles many natural mathematical questions that are independent of Zermelo–Fraenkel set theory with the axiom of choice (ZFC); for example, the axiom of constructibility implies the generalized continuum hypothesis, the negation of Suslin's hypothesis ...

  9. Algebra of sets - Wikipedia

    en.wikipedia.org/wiki/Algebra_of_sets

    The algebra of sets is the set-theoretic analogue of the algebra of numbers. Just as arithmetic addition and multiplication are associative and commutative, so are set union and intersection; just as the arithmetic relation "less than or equal" is reflexive, antisymmetric and transitive, so is the set relation of "subset".