When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Torsion constant - Wikipedia

    en.wikipedia.org/wiki/Torsion_constant

    The torsion constant or torsion coefficient is a geometrical property of a bar's cross-section. It is involved in the relationship between angle of twist and applied torque along the axis of the bar, for a homogeneous linear elastic bar. The torsion constant, together with material properties and length, describes a bar's torsional stiffness.

  3. Torsion (mechanics) - Wikipedia

    en.wikipedia.org/wiki/Torsion_(mechanics)

    Torsion of a square section bar Example of torsion mechanics. In the field of solid mechanics, torsion is the twisting of an object due to an applied torque [1] [2].Torsion could be defined as strain [3] [4] or angular deformation [5], and is measured by the angle a chosen section is rotated from its equilibrium position [6].

  4. Stiffness - Wikipedia

    en.wikipedia.org/wiki/Stiffness

    Similarly, the torsional stiffness of a straight section is = where is the rigidity modulus of the material, is the torsion constant for the section. Note that the torsional stiffness has dimensions [force] * [length] / [angle], so that its SI units are N*m/rad.

  5. Shear modulus - Wikipedia

    en.wikipedia.org/wiki/Shear_modulus

    The shear modulus is one of several quantities for measuring the stiffness of materials. All of them arise in the generalized Hooke's law: . Young's modulus E describes the material's strain response to uniaxial stress in the direction of this stress (like pulling on the ends of a wire or putting a weight on top of a column, with the wire getting longer and the column losing height),

  6. Section modulus - Wikipedia

    en.wikipedia.org/wiki/Section_modulus

    In solid mechanics and structural engineering, section modulus is a geometric property of a given cross-section used in the design of beams or flexural members.Other geometric properties used in design include: area for tension and shear, radius of gyration for compression, and second moment of area and polar second moment of area for stiffness.

  7. Saint-Venant's theorem - Wikipedia

    en.wikipedia.org/wiki/Saint-Venant's_theorem

    Saint-Venant [2] conjectured in 1856 that of all domains D of equal area A the circular one has the greatest torsional rigidity, that is . A rigorous proof of this inequality was not given until 1948 by Pólya. [3]

  8. Second polar moment of area - Wikipedia

    en.wikipedia.org/wiki/Second_polar_moment_of_area

    Simply put, the polar moment of area is a shaft or beam's resistance to being distorted by torsion, as a function of its shape. The rigidity comes from the object's cross-sectional area only, and does not depend on its material composition or shear modulus. The greater the magnitude of the second polar moment of area, the greater the torsional ...

  9. Bending of plates - Wikipedia

    en.wikipedia.org/wiki/Bending_of_plates

    We can calculate the stresses and strains in the plate once we know the displacement. ... is the bending rigidity, is the plate thickness, = / [()], is ...