When.com Web Search

  1. Ad

    related to: area of dodecagon using radius and volume method answer page example 2 weeks

Search results

  1. Results From The WOW.Com Content Network
  2. Dodecagon - Wikipedia

    en.wikipedia.org/wiki/Dodecagon

    A skew zig-zag dodecagon has vertices alternating between two parallel planes. A regular skew dodecagon is vertex-transitive with equal edge lengths. In 3-dimensions it will be a zig-zag skew dodecagon and can be seen in the vertices and side edges of a hexagonal antiprism with the same D 5d, [2 +,10] symmetry, order 20. The dodecagrammic ...

  3. Method of exhaustion - Wikipedia

    en.wikipedia.org/wiki/Method_of_exhaustion

    The area of an ellipse is proportional to a rectangle having sides equal to its major and minor axes; The volume of a sphere is 4 times that of a cone having a base of the same radius and height equal to this radius; The volume of a cylinder having a height equal to its diameter is 3/2 that of a sphere having the same diameter;

  4. Regular dodecahedron - Wikipedia

    en.wikipedia.org/wiki/Regular_dodecahedron

    If the edge length of a regular dodecahedron is , the radius of a circumscribed sphere (one that touches the regular dodecahedron at all vertices), the radius of an inscribed sphere (tangent to each of the regular dodecahedron's faces), and the midradius (one that touches the middle of each edge) are: [21] =, =, =. Given a regular dodecahedron ...

  5. Cavalieri's principle - Wikipedia

    en.wikipedia.org/wiki/Cavalieri's_principle

    A cone and a cylinder have radius r and height h. 2. The volume ratio is maintained when the height is scaled to h' = r √ π. 3. Decompose it into thin slices. 4. Using Cavalieri's principle, reshape each slice into a square of the same area. 5. The pyramid is replicated twice. 6. Combining them into a cube shows that the volume ratio is 1:3.

  6. Pappus's centroid theorem - Wikipedia

    en.wikipedia.org/wiki/Pappus's_centroid_theorem

    The theorem applied to an open cylinder, cone and a sphere to obtain their surface areas. The centroids are at a distance a (in red) from the axis of rotation.. In mathematics, Pappus's centroid theorem (also known as the Guldinus theorem, Pappus–Guldinus theorem or Pappus's theorem) is either of two related theorems dealing with the surface areas and volumes of surfaces and solids of ...

  7. Platonic solid - Wikipedia

    en.wikipedia.org/wiki/Platonic_solid

    The volume is computed as F times the volume of the pyramid whose base is a regular p-gon and whose height is the inradius r. That is, =. The following table lists the various radii of the Platonic solids together with their surface area and volume.

  8. List of centroids - Wikipedia

    en.wikipedia.org/wiki/List_of_centroids

    The following is a list of centroids of various two-dimensional and three-dimensional objects. The centroid of an object in -dimensional space is the intersection of all hyperplanes that divide into two parts of equal moment about the hyperplane.

  9. The Method of Mechanical Theorems - Wikipedia

    en.wikipedia.org/wiki/The_Method_of_Mechanical...

    Archimedes could also find the volume of the cone using the mechanical method, since, in modern terms, the integral involved is exactly the same as the one for area of the parabola. The volume of the cone is 1/3 its base area times the height. The base of the cone is a circle of radius 2, with area , while the height is 2, so the area is ...