When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Amide - Wikipedia

    en.wikipedia.org/wiki/Amide

    The structure of an amide can be described also as a resonance between two alternative structures: neutral (A) and zwitterionic (B). It is estimated that for acetamide , structure A makes a 62% contribution to the structure, while structure B makes a 28% contribution (these figures do not sum to 100% because there are additional less-important ...

  3. Acyl group - Wikipedia

    en.wikipedia.org/wiki/Acyl_group

    The two major resonance forms of an amide. Another factor that plays a role in determining the reactivity of acyl compounds is resonance. Amides exhibit two main resonance forms. Both are major contributors to the overall structure, so much so that the amide bond between the carbonyl carbon and the amide nitrogen has significant double bond ...

  4. Amide (functional group) - Wikipedia

    en.wikipedia.org/wiki/Amide_(functional_group)

    Structures of three kinds of amides: an organic amide (carboxamide), a sulfonamide, and a phosphoramide. In chemistry, the term amide (/ ˈ æ m aɪ d / or / ˈ æ m ɪ d / or / ˈ eɪ m aɪ d /) [1] [2] [3] is a compound with the functional group R n E(=O) x NR 2, where x is not zero, E is some element, and each R represents an organic group or hydrogen. [4]

  5. Electrophilic aromatic directing groups - Wikipedia

    en.wikipedia.org/wiki/Electrophilic_aromatic...

    This can also explain why phosphorus in phosphanes can't donate electron density to carbon through induction (i.e. +I effect) although it is less electronegative than carbon (2.19 vs 2.55, see electronegativity list) and why hydroiodic acid (pKa = -10) being much more acidic than hydrofluoric acid (pKa = 3).

  6. Amino radical - Wikipedia

    en.wikipedia.org/wiki/Amino_radical

    In chemistry, the amino radical, ·NH 2, also known as the aminyl or azanyl, is the neutral form of the amide ion (NH − 2). Aminyl radicals are highly reactive and consequently short-lived, like most radicals; however, they form an important part of nitrogen chemistry. In sufficiently high concentration, amino radicals dimerise to form hydrazine.

  7. Leaving group - Wikipedia

    en.wikipedia.org/wiki/Leaving_group

    Hydroxide, alkoxides, amides, hydride, and alkyl anions do not serve as leaving groups in S N 2 reactions. On the other hand, when anionic or dianionic tetrahedral intermediates collapse, the high electron density of the neighboring heteroatom facilitates the expulsion of a leaving group. Thus, in the case of ester and amide hydrolysis under ...

  8. Azanide - Wikipedia

    en.wikipedia.org/wiki/Azanide

    The term is obscure; derivatives of NH − 2 are almost invariably referred to as amides, [1] [2] [3] despite the fact that amide also refers to the organic functional group – C(=O)−NR 2. The anion NH − 2 is the conjugate base of ammonia , so it is formed by the self-ionization of ammonia .

  9. Imide - Wikipedia

    en.wikipedia.org/wiki/Imide

    These reactions proceed via the intermediacy of amides. The intramolecular reaction of a carboxylic acid with an amide is far faster than the intermolecular reaction, which is rarely observed. They may also be produced via the oxidation of amides, particularly when starting from lactams. [6] R(CO)NHCH 2 R' + 2 [O] → R(CO)N(CO)R' + H 2 O