Search results
Results From The WOW.Com Content Network
Archimedes' principle states that the upward buoyant force that is exerted on a body immersed in a fluid, whether fully or partially, is equal to the weight of the fluid that the body displaces. [1] Archimedes' principle is a law of physics fundamental to fluid mechanics .
Drag coefficients in fluids with Reynolds number approximately 10 4 [1] [2] Shapes are depicted with the same projected frontal area. In fluid dynamics, the drag coefficient (commonly denoted as: , or ) is a dimensionless quantity that is used to quantify the drag or resistance of an object in a fluid environment, such as air or water.
In practice a rough un-streamlined body (a bluff body) will have a around 1, more or less. Smoother objects can have much lower values of c d {\displaystyle c_{\rm {d}}} . The equation is precise – it simply provides the definition of c d {\displaystyle c_{\rm {d}}} ( drag coefficient ), which varies with the Reynolds number and is found by ...
For example, consider a small sphere with radius = 0.5 micrometre (diameter = 1.0 μm) moving through water at a velocity of 10 μm/s. Using 10 −3 Pa·s as the dynamic viscosity of water in SI units, we find a drag force of 0.09 pN.
In fluid dynamics, the Kirchhoff equations, named after Gustav Kirchhoff, describe the motion of a rigid body in an ideal fluid. = + + +, = + +, = (~ +) = ^, = ^ where and are the angular and linear velocity vectors at the point , respectively; ~ is the moment of inertia tensor, is the body's mass; ^ is a unit normal vector to the surface of the body at the point ; is a pressure at this point ...
If correctly selected, it reaches terminal velocity, which can be measured by the time it takes to pass two marks on the tube. Electronic sensing can be used for opaque fluids. Knowing the terminal velocity, the size and density of the sphere, and the density of the liquid, Stokes' law can be used to calculate the viscosity of the fluid. A ...
If mass density is ρ, the mass of the parcel is density multiplied by its volume m = ρA dx. The change in pressure over distance d x is d p and flow velocity v = d x / d t . Apply Newton's second law of motion (force = mass × acceleration) and recognizing that the effective force on the parcel of fluid is − A d p .
Internal forces between the particles that make up a body do not contribute to changing the momentum of the body as there is an equal and opposite force resulting in no net effect. [3] The linear momentum of a rigid body is the product of the mass of the body and the velocity of its center of mass v cm. [1] [4] [5]