Search results
Results From The WOW.Com Content Network
Cherenkov radiation glowing in the core of the Advanced Test Reactor at Idaho National Laboratory. Cherenkov radiation (/ tʃ ə ˈ r ɛ ŋ k ɒ f / [1]) is electromagnetic radiation emitted when a charged particle (such as an electron) passes through a dielectric medium (such as distilled water) at a speed greater than the phase velocity (speed of propagation of a wavefront in a medium) of ...
The Frank–Tamm formula yields the amount of Cherenkov radiation emitted on a given frequency as a charged particle moves through a medium at superluminal velocity. It is named for Russian physicists Ilya Frank and Igor Tamm who developed the theory of the Cherenkov effect in 1937, for which they were awarded a Nobel Prize in Physics in 1958.
Cherenkov radiation is not only present in the range of visible light or UV light but also in any frequency range where the emission condition can be met i.e. in the radiofrequency range. Different levels of information can be used. Binary information can be based on the absence or presence of detected Cherenkov radiation.
This eerie blue light shows particles traveling faster than the speed of light.
This is due to Cherenkov radiation, which emits photons in the blue and ultraviolet range. [ 1 ] Since 1951, fifty-two reactors have been built on the grounds of what was originally the Atomic Energy Commission's National Reactor Testing Station, currently the location of the U.S. Department of Energy's Idaho National Laboratory (INL).
A polar plot of the Cherenkov angles of photons associated with a 22 GeV/c particle in a radiator with =1.0005 is shown in Fig.2; both pion and kaon are illustrated; protons are below Cherenkov threshold, / >, producing no radiation in this case (which would also be a very clear signal of particle type = proton, since fluctuations in the number ...
The northern site was to be located in southeastern Colorado, United States and hosted by Lamar Community College. It also was to consist of water-Cherenkov detectors and fluorescence telescopes, covering the area of 10,370 km 2 —3.3 times larger than Auger South. The observatory was named after the French physicist Pierre Victor Auger.
Cherenkov detectors make use of this effect and in general consist of two main elements: a radiator in which Cherenkov radiation is produced and a photon detector. Ring imaging Cherenkov (RICH) detectors resolve the ring-shaped image of the focused Cherenkov radiation, enabling a measurement of the Cherenkov angle and thus the particle velocity.