Search results
Results From The WOW.Com Content Network
Weisstein, Eric W. "Fermat's Last Theorem". MathWorld. O'Connor, John J.; Robertson, Edmund F. (1996), Fermat's last theorem, MacTutor History of Mathematical Topics, archived from the original on 2013-01-16 University of St Andrews. "The Proof". PBS. The title of one edition of the PBS television series NOVA, discusses Andrew Wiles's effort to ...
His article was published in 1990. In doing so, Ribet finally proved the link between the two theorems by confirming, as Frey had suggested, that a proof of the Taniyama–Shimura–Weil conjecture for the kinds of elliptic curves Frey had identified, together with Ribet's theorem, would also prove Fermat's Last Theorem.
In number theory, Fermat's Last Theorem (sometimes called Fermat's conjecture, especially in older texts) states that no three positive integers a, b, and c satisfy the equation a n + b n = c n for any integer value of n greater than 2. The cases n = 1 and n = 2 have been known since antiquity to have infinitely many solutions. [1]
In mathematics, the interior extremum theorem, also known as Fermat's theorem, is a theorem which states that at the local extrema of a differentiable function, its derivative is always zero. It belongs to the mathematical field of real analysis and is named after French mathematician Pierre de Fermat .
Fermat's Last Theorem states that for powers greater than 2, the equation a k + b k = c k has no solutions in non-zero integers a, b, c. Extending the number of terms on either or both sides, and allowing for higher powers than 2, led to Leonhard Euler to propose in 1769 that for all integers n and k greater than 1, if the sum of n k th powers ...
In mathematics, the classical Langlands correspondence is a collection of results and conjectures relating number theory and representation theory. Formulated by Robert Langlands in the late 1960s, the Langlands correspondence is related to important conjectures in number theory such as the Taniyama–Shimura conjecture, which includes Fermat's Last Theorem as a special case.
Gerhard Frey (German:; born 1 June 1944) is a German mathematician, known for his work in number theory.Following an original idea of Hellegouarch, [1] he developed the notion of Frey–Hellegouarch curves, a construction of an elliptic curve from a purported solution to the Fermat equation, that is central to Wiles's proof of Fermat's Last Theorem.
Main page; Contents; Current events; Random article; About Wikipedia; Contact us; Pages for logged out editors learn more