When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Nuclear fusion - Wikipedia

    en.wikipedia.org/wiki/Nuclear_fusion

    The Sun is a main-sequence star, and, as such, generates its energy by nuclear fusion of hydrogen nuclei into helium. In its core, the Sun fuses 620 million metric tons of hydrogen and makes 616 million metric tons of helium each second. The fusion of lighter elements in stars releases energy and the mass that always accompanies it.

  3. Proton–proton chain - Wikipedia

    en.wikipedia.org/wiki/Proton–proton_chain

    The proton–proton chain, also commonly referred to as the p–p chain, is one of two known sets of nuclear fusion reactions by which stars convert hydrogen to helium. It dominates in stars with masses less than or equal to that of the Sun , [ 2 ] whereas the CNO cycle , the other known reaction, is suggested by theoretical models to dominate ...

  4. Sun - Wikipedia

    en.wikipedia.org/wiki/Sun

    The Sun is about halfway through its main-sequence stage, during which nuclear fusion reactions in its core fuse hydrogen into helium. Each second, more than four billion kilograms of matter are converted into energy within the Sun's core, producing neutrinos and solar radiation. At this rate, the Sun has so far converted around 100 times the ...

  5. Stellar nucleosynthesis - Wikipedia

    en.wikipedia.org/wiki/Stellar_nucleosynthesis

    Hydrogen fusion (nuclear fusion of four protons to form a helium-4 nucleus [20]) is the dominant process that generates energy in the cores of main-sequence stars. It is also called "hydrogen burning", which should not be confused with the chemical combustion of hydrogen in an oxidizing atmosphere.

  6. CNO cycle - Wikipedia

    en.wikipedia.org/wiki/CNO_cycle

    The CNO cycle (for carbon–nitrogen–oxygen; sometimes called Bethe–Weizsäcker cycle after Hans Albrecht Bethe and Carl Friedrich von Weizsäcker) is one of the two known sets of fusion reactions by which stars convert hydrogen to helium, the other being the proton–proton chain reaction (p–p cycle), which is more efficient at the Sun's ...

  7. G-type main-sequence star - Wikipedia

    en.wikipedia.org/wiki/G-type_main-sequence_star

    Each second, the Sun fuses approximately 600 million tons of hydrogen into helium in a process known as the proton–proton chain (4 hydrogens form 1 helium), converting about 4 million tons of matter to energy. [1] [2] Besides the Sun, other well-known examples of G-type main-sequence stars include Alpha Centauri, Tau Ceti, and 51 Pegasi. [3 ...

  8. RPT-EXPLAINER-Why green hydrogen is finally getting its day ...

    www.aol.com/news/rpt-explainer-why-green...

    More than $150 billion worth of green hydrogen projects have been announced globally in the past nine months. China, Japan and South Korea recently joined a slew of European countries setting net ...

  9. Solar core - Wikipedia

    en.wikipedia.org/wiki/Solar_core

    The composition of the Sun varies with depth. In the photosphere, it is about 73–74% hydrogen by mass, the rest being primarily helium, which is the same composition as the atmosphere of Jupiter, and the primordial composition of gases at the earliest star formation after the Big Bang.